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Preface

The very first time I understood how an operating system works was while reading
the source code of Minix. Years after, I had the pleasure of reading John Lions
“Commentary on UNIX” along with the source code of UNIX v6.

Although time has passed, I still feel that the best way to learn how an operating
system works is by reading its code. However, contemporary UNIX (read Linux,
Solaris, etc.) source code is a mess: hard to follow, complex, full of special cases,
plenty of compiler tricks and plenty of bugs. When Plan 9 source code was released
to the public on its 3rd edition, I knew it was just the material I needed for my
Operating Systems Design course. This commentary is an attempt to provide a guide
to the source code of Plan 9 3rd edition.

The concepts included are those covered on the “Operating Systems Design”
course of 4th year at Universidad Rey Juan Carlos de Madrid [2].

Any reader, specially when following the course, is encouraged to read the source
along with the commentary as well as to modify and enhance the system.
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Chapter 1

Introduction

An OS does mainly two things: it multiplexes the hardware and provides abstractions
built on it. Plan 9 does it for a network of machines. The nice thing of Plan 9 is that
it is centered around a single abstraction: the file. Almost everything in the system
is presented as files. Therefore, most of the complexity lies on the “multiplexes the
hardware” part, and not on the “provides abstractions” part. By not optimizing the
system where it is not necessary, even the “multiplexes the hardware” part is kept
simple (You should compare the source code with that of Linux if you don’t believe
this).

Before proceeding with the source code, I give you a piece of advice regarding how
to read this document, which shouldn’t be read as a regular book.

1.1 How to read this document

This commentary is that, a commentary to the Plan 9 kernel source. I have used the
source for the June release of the third edition. It should be read like any commentary
of a program, by keeping both the commentary and the source side by side. In fact,
you should try to read the system code without reading the commentary. If while
you are reading the code and the commentary, you feel curiosity about what else is
done at a particular file, you should go read it all: remember that nobody can teach
you what you don’t want to learn.

The final goal is to understand the system, how it is built, what services it provides
and how are them provided. As with any program, it is better to focus on the tasks the
system has to carry out. Most of the commentary will be centered on them. Before
understanding the code of the system, it is wise to take a view to the system as a
user. You are strongly advised to read the manual pages relevant for each chapter, as
well as to use the system either at the Plan 9 laboratory, at home, or at both. Ask
for help if feel you can’t install Plan 9 at home. Once you know the set of services
provided, you also know that has to be implemented, and you will understand the
code better.

While you read the commentary, you will see that I refer to the authors of the
source code as “the author”. Each time I mention the author, I am referring to the
author(s) of the particular piece of code discussed. Plan 9 is the joint result of many

1



2 CHAPTER 1. INTRODUCTION

people. The main authors of the code are Rob Pike, Dave Presotto, Sean Dorward,
Bob Flandrena, Ken Thompson, Howard Trickey, and Phil Winterbottom. As far as
I know, Rob Pike and Dave Presotto were the system architects; and Ken Thompson
was the architect for the file server.

Also, whenever I say “he” or “his”, you should understand that I am saying “he
or she” and “his or her”. I do not like typing so much and for me it is hard to find
impersonal sentences where “he” and “his” can be avoided. So excuse me, no offense
intended.

1.1.1 Coming up next

In the next section, I give you some pointers you should follow. They are mostly
research papers about Plan 9. You should read them (well, at least you are expected
to read the first one) to learn more about the system before looking at its internals.
It is good to learn to follow the documentation pointers “on demand”, as you feel you
need to know more about a particular topic to understand the code.

What remains of this chapter is whatever I think is the bare minimum to under-
stand the source code. Next section gives a quick introduction to reading code written
in C, the language used for the Plan 9 kernel. You can skip this whole section but
take a loot at it when you find something that is not “ANSI C” in the code. The
following one is a quick introduction to PC hardware facilities.

Remaining chapters describe different topics of the system and can be read ran-
domly, although it would be good to read chapter 2, about system source code or-
ganization, and chapter 3, on system startup, before proceeding with the following
ones. Besides describing how the system boots, chapter 3 describes several important
concepts to understand the design of Plan 9.

To save trees, the source code is not printed on paper. All chapters refer to code
using pointers like /dir/file.c:30,35. They focus on a given line (or lines). These
pointers can be used as “addresses” on the Plan 9 editors you will be using during
the course. It is very convenient to print this commentary, open the acme editor1 full-
screen, and then follow the commentary giving the pointers to acme as they appear.
It is even better to use a text version of the manuscript and open it on acme. Then
you can jump to the source by clicking button 3 on the pointer. What? you don’t
know how to use acme? Don’t worry, forget this and the next couple of paragraphs
and reread them when you get started with acme. To get started you can read the
paper on acme from volume 2 of the Plan 9 manual [7].

If you open the text version on acme, I suggest you execute these commands by
using button 2 on them:

Local bind -a . /sys/src/9/port

Local bind -a . /sys/src/9/pc

If you used button 2 to execute them, your namespace in acme will have been
arranged so that the files in this directory appear to be also in the directories with
the Plan 9 source code. This way, by using button 3 on file pointers acme will jump
to the given location in a different window. So, now that your namespace is ready,

1As you will see, acme is much more than a editor; it is a full environment to do your daily work
on Plan 9.
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close this file, go to /sys/src/9/pc and open this file there. This document will be
jumping to code in other directories (e.g. port); in that case, I suggest you simply
edit the tag of the Acme window for this file to update its directory (e.g. so that
the tag is /sys/src/9/pc/9.txt while reading files in the pc directory, and it is
/sys/src/9/port/9.txt while reading files in the port directory). Do not Put this
file.

More on acme advice, to get line numbers on a file, select it all by typing :, and
using button 3; then type | awk ’{printf("%-5d\t%s\n",NR,$0)}’ (or |cat -n if
you are on UNIX), select it and use button 2. Don’t Put the file. To locate identifiers
through the source you can create a script to grep the parameter in *.[ch]. For your
convenience, a copy of the kernel source with line numbers is installed both at the
Linux laboratory and at the Plan 9 laboratory.

Whenever we refer to a file, a relative path has as the working directory the
directory where we are looking source files on Plan 9. Absolute path names start
always at the Plan 9 root. If you are browsing on Linux, and Plan 9 is installed at
/plan9, that means /plan9/absolute path name instead. Remember that if you
use Linux you still have wily, an acme look-alike. You have also Inferno, where you
have acme (See the web page for the “Advanced Operating Systems” course [1]).

I suggest you install Plan 9 on your PC and then use it to read the source code
as I said before. By using the system you will “feel” how it works better, and you
will use something that is neither UNIX nor Windows. There are excellent pieces of
advice regarding how to install Plan 9 in volume 2 of the manual [10].

If you feel emotionally attached to Linux, you can at least install wily, an acme-
look-alike for UNIX; but you will be missing something great.

When discussing a particular data structure or function, it is good to see where is
it used through the system. To find that, you can use the grep program. By using it
within acme, you can simply click with your (three button) mouse jump through the
occurrences found by grep -n.

When a particular section of a classical OS textbook would further discuss a topic
being addressed, a pointer of the form [n]/section will appear, where the “[n]” part is a
reference to the bibliography. You do not need to follow this kind pointer immediately,
although that might help you if you feel lost.

Several times I will be discussing code implementing a system call or used by a
popular command. References such like man(1) instruct you to read the manual page
on “man” on section “1” of the manual as a definitive reference on the program or
system call discussed. You should at least browse the manual pages as they are cited;
and you can skip parts that you don’t understand there.

One of the abilities you are expected to learn is that of browsing through a rea-
sonably sized piece of code or documentation. While doing that, remember that it is
important to ignore at first things we don’t understand and try focus on what you
can understand. Of course, unless you know the not-understood part is not relevant
for you, you should try to understand that part too, and ask for help if you can’t.

1.2 Other documentation

The third edition of Plan 9 comes with a two volume programmer’s manual [9, 10].
The first volume, “the manual”, is the set of manual pages for the system. Manual
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pages are packaged into sections. There are several sections, including a section on
commands and another on system calls and library functions. Manual pages are
similar to that of the “man” command on UNIX, although the set of sections vary.

The second Plan 9 programmer’s manual volume, “the documents” is a set of
papers relevant for Plan 9. They discuss one aspect or another of the system. I expect
you to read at the very least several ones, and I highly recommend you read all of
them. You will find that papers on volume two are not like typical research papers
these days, on the contrary, they are simple, show a new idea or a new way of doing
something, and can be understood by themselves; moreover, they are implemented.
Reading Plan 9 papers is a fine way of get a kind introduction to the system.

1.2.1 Manual pages

The manual [9] is divided in sections. When you refer to a manual page like man(1),
you are referring to the manual page for “man” on section 1 of the manual. Manual
pages can be found at several places:

• Using the man command on Plan 9, like in man 1 man.

• Writing the name of the page (e.g. “man(1)”) on the acme editor, and clicking
on it with mouse button-2.

• running nroff on Linux for the manual page found at /sys/man/manX/xxxx. For
example, if your Plan 9 tree is at /plan9, you can:

nroff -man /plan9/sys/man/1/man

On the Linux laboratory, you have also the 9man command that refers to the
manual of Plan 9 installed on the Linux file system; and ignores Linux manual
pages.

• Using your favorite web browser and looking at http://plan9.bell-labs.com/sys/man

If, as I recommended, you are using acme to read the source, method 2 is the most
convenient one.

Now go, read intro(1), and drink some coffee. Give yourself enough time to
assimilate what you read there.

Done? Ok, if you are really done, you should now know that

• Section 1 of the manual is for general user commands. You type them on a
shell, or click on their names with button 2 in acme.

• Section 2 is for library functions and system calls. This is the programatic
interface to the system. You are studying how the system calls described here
are implemented.

• Section 3 shows kernel devices, which supply “kernel files” you need to access to
use the system. These files show up typically under /dev. You will be interested
mostly on manual pages for devices we discuss.
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• Section 4 has manual pages on file systems that you can mount. They are
supplied usually by user programs that implement some service. For instance,
access to FAT file systems is provided through a program that services a FAT
file system—using the FAT partition as the storage medium.

• Section 5 shows how you talk to files on Plan 9. Plan 9 is a distributed system
that permits remote access to files. This section shows the 9P protocol used for
that purpose. It is at the very heart of the system. During the chapter on file
systems, you should be reading this section.

• Section 6 discusses several file formats. For example, the format of manual
pages is shown at man(6).

• Section 7 addresses databases and programs that access them.

• Section 8 is about system administration. Commands needed to install and
maintain the system are found here. Some of them will appear while reading
the code, and you should read their manual pages.

Too many things to read? I recommend you read manual pages on demand, as
they are mentioned on the commentary, or as you use the tools described on them.
The very first time you use a new Plan 9 program or tool, it is good to take a look
to its manual page. In that way, as you use the system, you will be learning what it
has to offer.

1.2.2 Papers

Documents from the manual [10] can be found at several places too. You can use page
on Plan 9 (or gv on Linux) with postscript files in the Plan 9 directory /sys/doc. You
can also use your favorite web browser and look at http://plan9.bell-labs.com/sys/doc.
These are the papers:

Plan 9 From Bell Labs is an introductory paper. It gives you an overview of the
system. Reading it you will find that Plan 9 is not UNIX and also that networks
are central to the design of Plan 9.

You are expected to read this one soon.

The Use of Name Spaces in Plan 9 gives you more insight into one key feature
of Plan 9: every process has its own name space. You can think that every
process has a “UNIX mount table” for itself; although that is not the whole
truth.

You are expected to read this one.

Getting Started with Plan 9 is an introductory document with information you
need to know to start running Plan 9.

The Organization of Networks in Plan 9 shows how networking works on Plan 9.
The section on Streams is no longer relevant (Streams are gone on 3rd edition),
although it is worth reading it because the spirit remains the same.
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How to Use the Plan 9 C Compiler will be helpful for you to do your assign-
ments. Once you know how to use C, this paper tells you how to do it on
Plan 9. More on this on the next section.

Maintaining Files on Plan 9 with Mk describes a tool similar to make. It is used
to build programs (and documents) on Plan 9. This paper will be also of help
for doing your assignments; as you are expected to use both C and mk. More
on this on the next section.

The conventions for using mk in Plan 9 is also good to read. It shows how mk
is used to build the system. This paper can save you some time.

Acid: A Debugger Built From A Language is an introduction to the debugger.
You will find that it is not similar to the kind of debuggers you have been using,
and it is highly instructive to debug using Acid.

Acid Manual is the reference manual for the debugger.

Rc The Plan 9 Shell shows you the shell you will be using. If you have used a
UNIX shell that is probably all you need. You can learn more of rc as you use
it. Remember that rc is installed also on Linux.

The Text Editor sam describes the editor used on Plan 9. It is a fine editor al-
though you can go with acme instead. Indeed, I heavily suggest you start by
using Acme. Of course, it is healthy to try sam too. The sam editor is installed
on Linux too.

Acme: A User Interface for Programmers describes the Acme editor. Well, as
the title says, it is more like an environment. You have a clone for Linux called
wily. I used Emacs for years until I found acme, and the same may happen to
you. You should read this document and play with acme or wily, to navigate
the source code. By the way, it is named “acme” because it does everything.

Installing the Plan 9 Distribution is something to print and keep side by side
with the keyboard if you intend to run Plan 9. The title says it all.

Lexical File Names in Plan 9 or Getting Dot-Dot Right describes how file name
resolution works despite the existence of the bind(2) system call. Read this
before you read the chapter on Plan 9 files.

There are several other papers, good to read too, that I have omitted here for the
sake of brevity.

I recommend you fork now another process in your brain and read all of them in
background. Whenever I feel its better for you to read first any of them, I will let
you know.

1.3 Introduction to Plan 9

This section intentionally left blank2

2Read “Plan 9 From Bell Labs” [11] instead. The paper is so clear that nothing else has to be
said.
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1.4 Source code

Plan 9 is written in assembly (only a few parts) and C. You must read C code to
understand how the system works. Moreover, you are expected to write your own C
code to modify the kernel in your assignments.

This section will introduce you to C to let you read it. Nevertheless, you should
read the following two books if you have not done so:

The C programming Language, 2nd ed. is a good, kind, introduction to the
language [5]. It is easy to read and it pays to do so. The compiler used on the
book is the UNIX C compiler. You can find how to use the Plan 9 C compiler on
the paper “How to use the Plan 9 C compiler” [8]—these guys use descriptive
titles, don’t do them?

The practice of programming is a “must read” [4]. It will teach you those things
you should have been taught during the programming courses.

Now that you have pointers, I will first comment a bit of Plan 9 C, then a bit of
how to use mk to avoid the need to manually call the C compiler.

1.4.1 Notes on C

I include this section on C mostly to document a few differences with respect to ANSI
C, and for the sake of completeness. But I really recommend you to read The C
programming Language [5] if you don’t know C yet.

Where is the kernel C code?

The system source code is structured as a set of directories contained on /sys/src/9.
Although there are valuable include files at /386/include (and similar directories for
other architectures) and /sys/include. You will be using mostly these directories:

/sys/src/9/pc contains machine dependent code for PC computers. This code as-
sumes that you are running on a PC.

/sys/src/9/port contains portable code. This code is shared among different ar-
chitectures.

/sys/src/9/boot contains code used to bring up the system.

Other directories under /sys/src/9 contain source for other architectures, but for
the ip directory—which contains a TCP/IP protocol stack. For Plan 9 file systems,
the kernel source code is found at /sys/src/fs instead. Subdirectories of fs/ follow
the same conventions that subdirectories of 9/. I do not comment the file system
kernel, it is a specialized kernel (borrowing a lot from the generic kernel) designed to
serve files fast.
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C and its preprocessor

If you take a look to any of those directories, you will find files named “xxx.c”,
“xxx.h”, and “sss.s”. Files terminated on “.s” are assembly language files. They
contain low-level glue code and are used where either C is not low-level enough to let
the programmer do the job, or where it is more natural to use assembler than it is to
use C. Files named “xxx.c” and “xxx.h” are the subject of this section: they contain
C source code.

The C language has a compiler proper, and a preprocessor. Files are first fed to
the preprocessor, which does some work, and the result is finally sent to the compiler.
The compiler generates assembly code that will be translated to binary and linked
into an executable file. On Plan 9, the compiler is usually in charge of preprocessing
the source too, so a single program is run on the source; nevertheless, you better think
that source is first fed into the preprocessor and the result goes automatically to the
compiler proper.

C source files can be thought as “implementation modules” or package bodies. H
source files can be thought as “definition modules” or package specs. When someone
writes a C module to be used on a program, the module has a header file (a “.h” file)
with declarations needed to interface to the module and a C file (a “.C” file) with the
implementation.

Consider these three files:

/* this is main.c */ /* this is msg.h */ /* this is msg.c */

#include "msg.h" typedef char *Msg; #include "msg.h"

main() void set(Msg *m,char*s);

{ char *get(Msg m); void set(Msg*m,char*s){

Msg m; *m=strdup(s);

set(&m,"Hi world!"); }

char*get(Msg m){

print(get(m)); return m;

} }

The point to get here, is that msg.h has the interface to msg.c. It contains a type
definition for Msg and the header of a couple of functions. The main program (always
called main in C) can include these definitions and then use them. Files “main.c” and
“msg.c” can be compiled separately into object files and then linked together.

When compiling main.c, the preprocessor will notice the #include directive and
replace it by the set of lines found in the named file (msg.h in the example). It is
textual substitution. The preprocessor knows nothing about C. The resulting (pre-
processed) file would be sent to the C compiler proper. In the example, some includes
must be missing since there is no prototype for the print function (and the same
happens with strdup).

Another useful preprocessor directive is #define, which lets you define symbols.
Note that again, this is textual substitution—the preprocessor knows nothing about
C.

#define SPANISH 0

#define ENGLISH 1

extern int lang;
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void hi() {

if (lang == SPANISH)

print("hola");

else print("hello");

}

After the #define lines, the preprocessor will replace any “SPANISH” text with
“0” and “ENGLISH” with “1”. The compiler will see none of these symbols.

Functions

C has no procedures: every subroutine is a function. The result of a function may be
ignored though. Look at this function:

int add(int c, int l)

{

return c+l;

}

It receives two integer parameters named “c” and “l”—parameters are always passed
by value on C. It returns an integer value (the first “int” before the function name).
The “return” statement builds the return value for the function and transfers control
back to the caller routine.

A function can return “void” (which means “nothing”) is provided to let a function
return nothing. There is another use of void, a pointer to void is actually a pointer
to anything.

When a parameter passed to a function is not used, you can declare it without a
name, as in

int add3(int c, int)

{

return c+3;

}

This is not allowed by ANSI C. In this example, of course, it is silly to declare a
parameter and not to use it. However, when a function should present a generic
interface, and a concrete implementation of the function does not need a particular
parameter, it is wise to leave the interface untouched and not to use the parameter.

For instance, imagine that to open a file you should use a function with this
prototype:

int open(char *name, int just_for_read);

Now imagine a particular file on a CDROM is opened. In the implementation, it
is not necessary to specify the open mode because it has to be “read-only”. Now look
at this function:

int open_cdrom_file(char *name, int)

{ ...

}
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It implements the above interface, and has an unused parameter.
To use a function it suffices to know its header. We can know it because we

#included a file where the header is kept, or because we are calling the function after
its implementation.

Of course, functions can be (mutually) recursive.

Data types

There are several primitive data types: char for characters, int for integers, long
for long integers, long long for longer integers, double for real numbers. These are
signed, and you have types defined with a leading “u” for the unsigned versions (e.g.:
ulong, which is actually unsigned long).

Arithmetic operators are as usual, with the addition of ++ and -- which increment
and decrement the operand. They may be used either prefix or postfix. When prefix,
the argument is incremented (or decremented) prior to its use in the expression; when
postfix, the argument is modified after used for the expression. For instance, i++=j++
means:

i=j;

i++;

j++;

whereas ++i=++j means

i++;

j++;

i=j;

The modulus operator is “%”. Assignment is done with =. Assignment is sometimes
“folded” with another operator. For instance, i%=3 means i=i%3, x|=0x4 means
x=x|4, which does a bitwise OR with for. ‘&’ is the bitwise AND operator. The
operator “~x” negates each bit in x, so x=~x inverts every bit in x.

Booleans and conditions

There is no boolean in C, any non-zero integer value (or convertible to integer) is
understood as “TRUE”. Zero, means false.

Relational operators are ==, !=, <=, >=, <, >, where != means “not equal”.
You can use ! to negate a boolean expression. More complex boolean expressions can
be built using && (and), || (or) and ! (not). Once the compiler knows that a boolean
expression will be true (or false) it will not evaluate the rest of the expression. Some
would say that C has shortcut evaluation of boolean expressions. For those of you
how know Ada, in C you are always using “and then” and “or then”. For instance: on
1 || f(), function f would never be called. The same would happen to 0 && f().
This is very useful because you can check at a pointer is not nil and dereference it
within the same condition.

As Plan 9 is meant to run anywhere in the world, it has to cope with every lan-
guage. A Rune data type is defined (it is actually an unsigned short) to support
strings of “characters” in any language. Rune is used to represent a character or a
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symbol, hence the name (some languages use symbols for words, or lexems). Remem-
ber that char has only 256 values which are not enough to accommodate symbols
on all languages. The character encoding system is called Unicode, encoded using
UTF-8. UTF-8 is compatible with the first 128 ASCII characters, but beware that it
will use several bytes when needed. And beware too that it is not compatible with
ISO.8859.1 that you use on Linux.

Given primitive types, you can build more complex types as follows.

pointers A pointer to a given type is declared using *; e.g. char *p is a pointer to
character. You refer to the pointed-to value by using also *, like in *p—which
is the character pointed by p.

The operator & gives the address of a variable; hence, given int i, the decla-
ration int *p=&i would declare a pointer p and initialize it to point to i. A
function name can be used as a pointer to the function, like in

int (*f)(int a, int b) = add3; /* the previous add3 function */

...

g=(*f)(1,2);

arrays An array in C is simply a pointer with some storage associated, do not forget
this. For instance, char s[3] declares an array named s of three char slots.
The slots are s[0], s[1], and s[2]. Array indexes go from zero to the array
length minus one.

Arrays can be initialized as in

int arry[3] = { 10, 20, 30 };

int tokens[256] = {

[’$’] DOLLAR,

[’/’] SLASH

};

The last example is an array of 256 integers. We plan to index it using a char-
acter (which is a small integer in C). And we only initialize slots corresponding
to characters ’$’ and ’/’. This initialization style is an addition to ANSI C in
Plan 9, and it is very useful: instead of using conditionals to check for dollars
and slashes and generate a number, we can spend a few extra bytes and allocate
one array holding an entry for every character; for those of interest, we place
there the values desired; for others, we don’t care.

Because arrays are actually pointers with some storage, C has pointer arith-
metic. Assume this

int a[3];

int *p=a;

Here, p points to a[0]. Well, p+1 is a pointer pointing to a[1], p-1 would point
to the integer right before a[0].
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Also, if p points to a[1] and q points to a[0], then p-q would be 1: the number
of elements between the two pointers.

As you can imagine, these to expressions are equivalent: a[i] and *(a+i).

Beware, p=a will copy pointers, not array contents. Use memmove to do that.

structures An struct is the equivalent of a record in Pascal. It is declared by giving
a set of field declarations. E.g.:

typedef struct Point Point;

struct Point {

int x;

int y;

};

Point p = (Point){3,2};

Point q = (Point){ .x 3, .y 2 };

declares a new struct tag, Point; declares a point p of type Point; initializes it
with a copy of the Point {3,2}. “Literals” of structures are called “structure
displays” in Plan 9’s C. They are an extension to ANSI C.

In the example above, struct Point {...} declares the structure with an
structure tag Point, so that you can say struct Point p. But it is custom-
ary to give a synonymous for the new type “struct Point” by using typedef.
Typedef defines a new name (the Point on the right in the example) for an
existing type (struct Point in the example).

Once p has been declared, p.x and p.y are names for the members (i.e. fields)
of the p structure.

Structures can be nested like in:

struct Line {

Point origin;

Point end;

};

And we would say l.origin.x, provided that l is a Line.

If a struct, member of another struct, has no name its members are “promoted”
to the outer struct. That is to save some typing. For example:

typedef struct Circle Circle;

struct Circle {

Point; /* has no name! */

int radius;

};

Circle c;
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And we could say things like c.x, c.y, and c.radius. Both x and y come from
Point! You can even say c.Point, although it would be tasteless on this case.
Member promotion and unnamed fields are an extension to ANSI C.

When you have a pointer to an structure, you can refer to members of the
structure in several ways:

/* The way that you should know by now: */

Point *p;

(*p).x =3;

/* A more convenient way */

p->x = 3;

Everybody uses the -> form, and nobody uses the (*x).y form.

Unions A union is a struct where only one of its fields will be used at a time. It is
used to build variant records, although it is a bit more flexible. For instance:

typedef struct Vehicle Vehicle;

struct Vehicle {

#define CAR 0

#define SHIP 1

int kind;

union {

int number_of_wheels;

char can_go_underwater;

};

};

Note how we used an anonymous union (one with no name) within Vehicle.
We can use either one field or another of the union: they will be sharing storage.
We cannot use both at the same time.

More examples:

/* array of 4 points; to use like in: arry[3].x, arry[2].y, etc. */

Point arry[4];

/* A polygon that contains the number of points, and an array with them. */

struct Polygon {

int npoints;

Point points[MAXPOINTS];

};

Control structures

Control structures are very easy to learn. All of them use sentences as their building
blocks. Sentences are always terminated by semicolons. Several sentences may be
grouped to form a block using { and }. At the beginning of a block, you may declare
some variables.
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while To repeat while the condition holds:

while(*p){

*q++ = *p++;

}

A variant tests the condition at the end and iterates at least once:

do {

x[i]++;

x[j]--;

} while(i != j);

for is a generic iteration tool.

for (i=0; i<n; i++){

x[i]=i;

}

means

i=0;

while(i<n) {

x[i]=i;

i++;

}

You specify the initialization, the continuation condition, and the re-initialization
to prepare for the next iteration.

conditionals Well, you know

if (condition) {

then-part;

}

if (condition) {

then-part;

} else {

else-part;

}

switch (variable) {

case A_VALUE:

do this;

break;

case OTHER_VALUE:

do that;

break;

default:

do the default;

}



1.4. SOURCE CODE 15

On the switch, you need to place breaks at the end of every branch to avoid
“falling through” the next branch.

Gotos are easy, you define a label and then can branch there. They are used inside
a function. The label here is error.

while(getinput()){

processit();

if (haserror())

goto error;

}

return result();

error:

abortprocessing();

Storage classes

When the compiler gets a new symbol, either a function or a global variable it attaches
an “storage class” to it. The storage class determines among other things whether
the symbol should go in the symbol table for the object file or not. In other words,
you can export a symbol to the rest of the program, or keep the symbol private to a
given file by using a particular storage class.

Symbols declared extern (they will be by default) are exported to other object
(read “source”) files. If they are not initialized, they are initialized to all-zeroes (by
the loader). For instance:

/* this is file a.c */ /* this is b.h */ /* this is b.c */

#include "b.h"

extern int a; int a=3;

int f()

{

return a;

}

The function f will return 3, unless a be modified.
On the other hand, if a symbol is declared static, its scope will go from the place

of the declaration to the end of the file. Globals and functions to be used just within
a source file, are declared static.

How to compile?

Ok, but how do you compile source code on Plan 9? The compiler is actually a
compiler suite. When you compile you use one of the compilers, according to your
target architecture (usually, $objtype). The compilers making the suite are named
Xc, where the X identifies the architecture. For instance, you will be using 8c, which
is the compiler for 386 machines. But you could use kc (for the sparc) instead.

The assembler and the linker follow the same convention: 8a is the 386 assembler
and 8l the linker.

To compile foo.c, you simply call the compiler 8c foo.c.
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As you will see in the next section, mk is used to automatically compile the source
for your $objtype, or for the whole set of supported platforms.

By following simple naming conventions ( “8c”, “8a”, “8l”) the compiler enhances
portability, rather than enlarging the differences between different machines. Con-
ventions are important in that they can simplify your life and allow the automation
of tasks. I hope you will appreciate it on Plan 9.

1.4.2 mk

The program mk is a successor of make. If you don’t know make, don’t worry. mk

simply instructs the machine to build certain “products” by means of source files.

mk uses a file named mkfile to learn what product(s) should be built, and how it
should be done. For each directory with sources to build a product there use to be a
mkfile. If you want to build the product for that directory, you only need to call mk
there.

This is an (edited) excerpt from
/sys/src/9/pc/mkfile, the mkfile used to build the kernel for the pc:

CONF=pc #defines the variable CONF to have the value "pc"

objtype=386 #building on intel

</$objtype/mkfile #use the variable just defined to include the mkfile

#that contains machine dependent definitions

#(e.g. which one is the C compiler for this platform)

DEVS=‘{rc ../port/mkdevlist $CONF}

#defines the variable DEVS with the string printed

#by the shell command within brackets. The command

#uses the variable CONF defined above.

#The string will be the list of object files for

#drivers on this platform

OBJ=$DEVS

# several lines deleted here...

# defines the variable OBJ with the list of object files,

# which includes the list of object files for drivers.

#see below what this means....

plan9pc: $OBJ

$CC $CFLAGS $CONF.c

$LD -o $target -l $OBJ $CONF.$O

#other rules follow....

By including /$objtype/mkfile, mk defines the actual compiler, assembler, and
linker for the current architecture. You achieve portability not by using a single
compiler that works for everyone; you achieve portability by following the same rules
everywhere, and by keeping a set of simple compilers for all supported platforms. You
port Plan 9 to a new architecture by adding a new compiler, assembler, and linker;
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not by modifying the existing ones3.

The last three lines of the excerpt are a rule. Rules tell mk how to build things
using other things. In this case, the target of the rule (the product) is plan9pc. To
build this, mk will need those files listed in $OBJ. Should those files be missing, mk
will look in the mkfile how to build them. Once the dependencies are satisfied (i.e.
the files in $OBJ do exist, and are up-to-date with respect to their sources), mk will
use the two last lines to build the product. The rule says that we need $OBJ, and
indeed the commands used within the rule do use $OBJ. The rule also uses variables
to specify which C compiler ($CC) should be used, and the same for the linker.

The variable $target is defined by mk to be the current target for the rule being
processed.

If you go to the directory
/sys/src/9/pc and call mk, it will see the first rule in the mkfile. As its target is
plan9pc, it will try to build it by recursively obtaining targets following the rules.

You will not need to write mkfiles until you start with your lab assignment;
therefore, what I said about mk is enough for you to proceed. Nevertheless, I recom-
mend you put the paper on mk early in your list of “to-read-things” so you know it
well before you need it.

1.5 PC hardware facilities

In this section, I will briefly describe the hardware facilities found at modern Intel
based PCs. The aim is to let you know enough of what the hardware provides so you
could understand the software. For a complete description, I suggest you refer to the
Intel manuals [3]. What I am describing here applies for processors from the i386 up
to the most recent (32 bit) one. If you already know how the Intel 386 works, you will
notice that I am oversimplifying many things: forgive me, but I am most interested
in the the software.

When it is reset, the processor operates into what Intel calls “Real-address mode”.
On this mode, the Intel is emulating an old 8086, a 16bit machine. In real mode, the
only virtual memory facility is segmentation: no paging. One of the first things
all modern OSes do on Intels, is to quickly set the processor into what intel calls
“protected mode”, which is the native mode of the processor. In protected mode,
the machine is using 32bit words, as it should. Most of the processor structures a
describe below are used while in protected mode.

1.5.1 Registers

The processor has eight 32 bits “general purpose” registers called eax, ebx, ecx, edx,
esi, edi, ebp and esp. They are not really “general purpose” as there are instructions
that operate on some of them. For example, esp is the stack pointer register, and ebp

is used as a frame pointer register (to point to the activation frame for functions in
the stack). eax is generally used as the “accumulator” register. esi and edi registers
are used by string processing instructions, which repeat a given operation on a series

3Of course, if you plan to do so, you should reuse the existing source. The machine dependent
part of the compiler is the only thing that needs to be done
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of bytes in memory; they are used as indexes into memory (source index/destination
index). Because the processor also has real mode, there are register names ax, bx,
cx, and dx which refer to the 16 bit version of the (actually 32 bits) registers. Bytes
within this 16 bit registers, can be addressed by using names such like ah and al.

Two other registers are eip (the program counter) and eflags (status flags).
eflags is used both to keep arithmetic and logic flags (e.g. to control conditional
tests) and also to keep status bits for the processor (e.g. interrupt-enable). I will
mention some flags later.

There are also six segment registers: cs is the code segment register, ds is the
data segment register, ss is the stack segment register. The other three ones (es, fs,
and gs) are not so tied to instruction execution as the first three ones. Instruction
fetching is done from the segment described by cs, operands and data is fetch from
the segment described from the ds register (unless specified otherwise), and stack
instructions work using the ss register.

Other registers are the tr (task register), used to point to a TSS (task state
segment); cr2, used to place there the faulting address on page faults; cr3, used to
point to the page table; gdt (global descriptor table) used to point to a table with
segment descriptors; idt (interrupt descriptor table) used to point to a table with
interrupt descriptors; and other ones that I omit.

1.5.2 Instructions and addressing modes

The paper on volume 2 of the manual, “A manual for the Plan 9 assembler” [6], can
be of help here. I suggest you read that paper when you have problems following
assembly code. Nevertheless, to help you a bit, I reproduce here the information you
are likely to need just to understand the code.

The assembler uses 32bit registers, named ax, bx, cx, dx, sp, bp, si, and di.
Note the convention! which is different from the one I used while describing the Intel
register set4.

Several registers are invented by the assembler. An important one is fp, which
appears as the “frame pointer” register, and points to local storage area to keep
procedure parameters. For example, 0(fp) is the first parameter (int), 1(fp) the
next, and so on. If you don’t understand what “0(fp)” means, read it like fp[0] by
now.

The set of instructions is the set found at the intel manual (see [3]), with b, w,
or l appended for operations using bytes (8bits), words (16bits), and longs (32bits).
You can use names like ah, bh, etc. to access the high part of the 16bit version of ax.
Assignment order is left to right. For example:

movl ax, bx Move ax into bx.

movb ax, bx Move low 8bits from ax into low 8bits at bx.

movb ah, bx Move high 8bits in the low 16bits of ax to bx.

Although Intel forgot to implement instructions for several combinations of “movs”,
the Plan 9 compiler suite emulates such instructions, and you can forget about that.

4I used the typical convention found in Linux and popular assemblers for the PC.
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Some instructions are “invented” by the assembler. For example, text is used to
define a procedure. Its parameters are the procedure name and the number of cells
to be used for local variables in the procedure stack frame. Parameters are passed in
the stack, and the result value from the function is passed in ax.

There are several addressing modes used in the Intel.

ax The register ax.

$b Immediate value b.

(ax) The cell whose address is in ax.

10(ax) The cell whose address is found by adding 10 to contents of ax.

(ax)(bx*4) A cell in a table starting at the address in bx, with 4 cells per entry,
using the contents of ax as an index.

2(ax)(bx*4) Works in the same way, but adding 2 as an offset.

Although Intel allows you to specify which segment to use for a given address, the
Plan 9 assembler uses always cs for the code segment, ds for the data segment, and
ss for the stack segment—usually, ss is the same of ds. Things are simple!

Beware that names for conditional branch operations follow the names of the
68020, and not the Intel ones. But this should be clear while you read the code.

1.5.3 Memory

An Intel address is specified as a 32 bit address (4G address space) on a given segment.
To specify a segment, you must tell the instruction which one to use (cs, ds, etc.).
You can tell the instruction either by defaulting to cs, ds or ss, or by specifying the
segment register to use.

To load a segment register to specify a particular segment, you use a load instruc-
tion that is given a “segment selector” as its operand. The selector is an offset into
the GDT (global descriptor table). Each entry in the GDT specifies a segment base
address, limit, and protection. These descriptors are loaded (by using that offset)
into segment registers, which are used later by the instructions. The whole picture is
shown at figure 1.1.

In Plan 9, there are segment descriptors in the GDT for kernel and user text (code)
and data. The stack segment is usually set like the data segment (same protections).

The processor runs at a given privilege level, from 0 to 3, as specified by the
privilege level of the running text segment. As segment descriptors include a privilege
level, they can be used to prevent a non-privileged segment (e.g. ring 3) from using
code/data placed at a privileged segment (e.g. ring 0). Plan 9 keeps the kernel within
protection ring 0, and user code and data within protection ring 3.

Apart from protection, segments are not used. This means that their base address
is usually set to zero, and their limit set to the maximum. As an address is resolved by
adding the segment base to the 32 bit offset, it turns out that the address is actually
the 32 bit offset.

Intel refers to addresses resulting from the segmentation unit (i.e. after the seg-
ment base has been added) as “linear addresses”. Plan 9, as almost every one else,
uses linear addresses as its virtual addresses, by using base zero for segment.
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4G of linear (virtual) memory

Identity translation by segmentation hw.

4G of virtual memory

Kernel text segment
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ss

loaded

Segment registers

page table translations

1024 translations

Figure 1.1: Virtual memory in the Intel processor. GDT entries contain base, limit,
ring, and kind for all segments. GDT segment descriptors can be loaded into segment
registers. The processor applies segmentation using segment registers and then applies
paging.

A linear address is later fed into the paging unit, which uses a two-level page table
pointed to by cr3. Pages (therefore page frames too) are 4K bytes long. The first-
level page table (PD, or page directory) keeps 1024 entries, mapping 4Mbytes each.
The Intel can use a PD entry to map a whole 4Mbyte “super-page” to a 4M “super-
page-frame”. The second level page table has 1024 entries too, mapping 4Kbytes
each.

1.5.4 Interrupts and exceptions

Both interrupts (e.g. clock) and exceptions (e.g. page faults) are handled by the
hardware with the help of the IDT (interrupt descriptor table). The IDT contains
“interrupt descriptors”. When a trap or interrupt happens, the hardware uses the
exception number to index into the IDT and see where is the handler for the event.
Each descriptor contains a privilege level too, which determines which protection rings
may use them by instructions like int, which causes an interrupt event. A trap or
interrupt may cause a privilege level change in the processor, if the handler’s ring
is more privileged that the caller’s ring. For instance, to implement the system call
mechanism, Plan 9 sets the SYSCALL entry with privilege level 3, so that the user
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ring can use int instructions to cause a trap. After the int, the system is running
in ring 0, where the kernel executes. See figure 1.2 to get a glance of the structures
involved.

ring that
can int N

gdtr

4G of virtual memory

IDT
0
0
0
0
0

0
3

call strayintr(0)

call strayintr(1)

call strayintr(2)

call strayintr(3)

call strayintr(4)

call strayintr(6)

vectortable

2
2
2
2
2
2
2

call syscallintr

idtr

segment nb.

GDT

TSS seg

nullseg

0 4G 0 D

0 4G 0 E

0 4G 3 D

0 4G 3 E

Identity translation by segmentation hw.

4G of linear (virtual) memory

Kernel text segment

(base,lim.,ring,kind)

Figure 1.2: The idtr register points to an IDT table, used to vector interrupts.
Each interrupt handler runs in a segment as described by a field in the IDT entry,
which selects a descriptor from the GDT table. The IDT table shown here has been
simplified (less entries than the real one).

There is one weird data structure, the TSS (task state segment), used by Intel
to describe tasks. It specifies the processor state for a task and can be used to do
context switching. The processor uses it to see what stack should be used for handling
exceptions at the various protection rings. Plan 9 uses it to specify which kernel stack
to use in case an event occurs while running at ring 3. While in ring 0, the processor
uses the current stack (ss and esp) to save the processor state upon exceptions.
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Chapter 2

System source

I will give you a quick tour through the source code first, and then, in the next chapter
we will start to see the set of data structures used through the system as we learn
how it boots. Therefore, in this chapter we are going to study the overall distribution
of the source code of Plan 9.

2.1 Quick tour to the source

The source code of the kernel for the PC can be found in the /sys/src/9/pc directory
(machine dependent part) and also in the /sys/src/9/port directory (portable part).
The code for the kernel loader on PCs is at /sys/src/boot/pc.

2.1.1 Interesting include files

Almost every source file includes u.h, found at /386/include. It contains definitions
for common data types and symbols for the 386 (e.g. uint, ulong, etc. It includes
also several macros to handle variable argument lists on function calls (e.g. like that
of print). It is defined here below /386 because it assumes a particular stack layout
which is only guaranteed to work for the Plan 9 compiler on the 386.

Another interesting file here is ureg.h. It contains the definition of the 386 register
set.

The directory sys/include contains include files for users the system. The most
interesting one is libc.h. This file contains definitions for the set of available system
calls and utility functions of the C library. There are others, but the most important
are placed here. The set of function prototypes starting at _exits is the set of system
calls. You can look at section 2 of the manual to see what they do.

2.1.2 Interesting source files

The machine dependent part of the system is the one that “boots” it and uses services
provided by the portable part. The same holds for the compilation. The machine de-
pendent part contains the mkfile necessary for compiling the kernel. As compilation

23
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proceeds, it uses both headers and C files from the portable part to build a kernel
image. The best way to see this is to compile a kernel:

Compiling a kernel

Go to /sys/src/9/pc, and type mk CONF=9pcdisk. You will see how a new kernel
is built. The CONF=9pcdisk sets a variable for mk. It tells mk that 9pcdisk is the
configuration file to be used for the kernel.

The configuration file contains a description of the devices that should be linked
into the system. An rc script uses this file to generate source code that initializes
and starts these drivers. The mkfile includes also a list of relevant object files to link
into the system.

If you take a look to the mkfile you will see how it includes the portable code mk

file, ../port/portmkfile. The portmkfile found there assumes it will be used from
a machine dependent directory. In that way, different kernels can be built that pull
up code from the ../port directory. Again, the machine generates (first two rules
of ../port/portmkfile) the list of files to be built into the kernel. This includes
also the source of tcp/ip, found in ../ip. Because all compilation process from the
machine dependent directory, both port and ip have a leading ../ when used to
locate files.

The rules using the variable CONF in portmkfile generate source code from the
configuration file using mkdevc and compile it.

Lesson: whenever the machine can do something for you, like generating
the source code that you should write by hand, let the machine do the
job.

You can see how there are a bunch of rc scripts named mk..., that generate source
code which can be generated mechanically. Let the machine do the job!

The machine dependent directory

Go now to pc. files named dev... contain device code. The code for the device
named ether in the configuration file goes into devether.c. Naming conventions are
important in Plan 9, they allow the automation of tasks, like generating the list of
file names where drivers configured are to be found. Other files like cga, dma, etc.
contain code to handle machine dependent facilities like the video card.

Two important files are dat.h and fns.h. To avoid the problem of circular include
files, data structure and function definitions for the machine dependent part are placed
here. The common and crucial stuff is found here. There are other definitions, more
self-contained, that have their own include files. For example, memory management
definitions are found at mem.h.

An important source file is l.s, that contains the low-level glue code. This code
contains the entry points into the system. As examples, start is where the system
starts executing, inb and outb do byte IO on IO ports, and strayintr is where the
kernel starts executing after the hardware gets an interrupt/exception. System calls
are also “exceptions” as far as the hardware is concerned.
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Part of the low level glue is in plan9l.s, although it could go perfectly on l.s.
plan9l.s contains the couple of routines that call to user code and return from a
system call.

Another important source file is main.c. Once the assembly code has things set
up enough, it calls main to start the system. Most of system initialization goes here.
We will be looking through l.s and main.c in the next chapter.

Regarding memory handling, memory.c is in charge of allocating memory within
the kernel for different purposes, and mmu.c is in charge of handling paging (virtual
memory) facilities.

The file trap.c contains C code to handle traps. That code is called from l.s

once the hardware jumps into l.s code to handle traps. Although trap could call
syscall to handle system calls, plan9l.s calls syscall directly. It dispatches to the
appropriate system call.

Most other files can be ignored by now.

The portable directory

Most system services are found here.“Abstract” devices that do not operate on real
hardware, processes, virtual memory, and files along with several other things.

Several files contain portable utilities: alloc.c and xalloc.c contains portable
memory allocation routines, alarm.c alarms, cache.c is in charge of caching, taslock.c
and qlock.c implements locks, qio implement queues for block IO, etc.

There are also “portable” devices like pipes, the console, etc. defined in files
named dev.... We will detail some of them, but you can ignore them by now.
As it happens with machine dependent device files, an important part of the code
provides hierarchies of files to export the devices to the user. For example, devproc.c
implements files seen on /proc, which represent system processes.

Communication channels are implemented in chan.c. Channels are central in
Plan 9. They represent an IO endpoint to a file. In other words, channels are “files
begin used”. Remember that everything is a file, therefore, this abstraction is really
important.

Files portdat.h and portfns.c contain portable common data structures and
functions. They are the portable counterpart of pc/dat.h and pc/fns.h. This is the
place where to start searching for the definition of data structures used within the
kernel. For example, Chan, is defined here. Another interesting file defining common
functions is lib.h which defines routines from the C library used within the kernel.
The kernel uses this instead of the real include file for the C library I mentioned above.
It is common that kernels use part of the library used for user code as a convenience.

Processes are implemented at proc.c.

Files fault.c, page.c, segment.c and swap.c have to do with virtual memory
handling. Their names give an idea of what they have to do with it.

Network interfaces are handled at netif.c. Note that tcp/ip code is not here,
but at /sys/src/9/ip instead.

Finally, files named sys... contain the implementation of famous system calls
built on services provided by the rest of the code.
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2.2 System structures

As you proceed through next chapters, remember, the code mostly follows from the
data structures. Therefore, try to imagine what the system will do with the informa-
tion kept within the structures. Ask yourself what is each field for. Try to grep the
source for declarations of the structures and see how they are used.

Lesson: When you implement anything, plan for your algorithms but pay
special attention to your data structures. If can do anything with a data
structure, don’t do it with code.

What? You didn’t read intro(1)? You didn’t read Plan 9 From Bell Labs? Go,
read them, and don’t continue before you do so.



Chapter 3

Starting up

Plan 9 starts with the bare hardware, and it must provide a bunch of services. If you
did read your assignments, you should know which ones.

During this chapter, you will be reading these files:

• Files at /sys/src/boot/pc:

l.s Low-level assembly routines and entry points.

load.c main procedure for 9load.

dat.h data structures.

devfloppy.c floppy device driver.

dosboot.c Code for using FAT formatted floppies.

conf.c configuration (plan9.ini).

console.c Console I/O for the PC.

boot.c Kernel loading and boot.

• Files at /sys/src/9/pc:

l.s Low-level routines, including entry points (the main program, and interrupt
handlers).

main.c PC system initialization.

dat.h Machine dependent data structures.

devarch.c arch device driver, which has also routines to start some hardware
services.

memory.c Physical memory allocation.

trap.c Trap and interrupt handling procedures.

plan9l.s handler for system call trap and code to jump to user code.

mmu.c Memory management unit code.

i8259.c Programmable Interrupt Controller code.

io.h I/O data structures.

27
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pcdisk.c (generated) initialization for configured devices.

• Files at /sys/src/9/port:

xalloc.c memory allocator for long lived allocated structures.

alloc.c dynamic (kernel) memory allocation.

qio.c Queues for I/O.

portdat.h Portable data structures.

proc.c Processes.

pgrp.c Process groups and file descriptor groups.

sysfile.c System calls for files.

devroot.c root device.

page.c Page allocator.

• Files at /sys/src/9/libc:

pool.c memory pools (to support malloc style memory allocation).

. . . and several other files used as examples.

3.1 Introduction

In Plan 9, there are different kernels for terminals, CPU servers, and file servers. The
CPU server is very much like the terminal, however, the file server is optimized to
serve files, and not to run user programs. Indeed, the few programs you need to run
at the file server are executed from the file server console with a lot of help from the
kernel.

I will be considering only terminals in what follows.
The boot process starts when you press the power button on your PC. The BIOS

(a program in ROM) is instructed to search for several devices to boot from. Usually,
it will search for a floppy disk unit, a cdrom unit, and a hard disk. Once the boot
device is located, the BIOS loads a block from the device. For hard disks, it loads the
Master Boot Record (MBR), for floppies, it loads the boot sector (PBS).

Once either the MBR or the PBS get loaded, the BIOS jumps to its starting
address. The BIOS is done. Both MBR and PBS contain a tiny program that
proceeds the loading process. The MBR scans the partition table for active partitions
and loads the PBS sector of the active partition. Thus, all in all, we end up with
the PBS loaded in memory. Plan 9 supplies its own PBS program. It will load the
program 9load which will continue the job. To keep the PBS program small, 9load
is stored contiguously on disk; i.e. to load it, the PBS only needs to load a bunch of
contiguous disk blocks. Keep in mind that PBS needs to fit in a sector. That is why
9load is a different program, to be bigger than a sector. The source for mbr, pbs, and
9load is in sys/src/boot/pc. If you want to know what programs are generated on
that directory, look at the mkfile and see what are the targets.

Why not load the kernel instead of loading 9load? Because the kernel may come
from the network, and need a program that knows how to do that. Such a program
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would not fit in a boot sector. Another reason is that perhaps the code in 9load has
been compiled into a DOS COM file, which can be at most 64K. That file must obey
the limits of DOS (if Plan 9 is being started from DOS), but it may load a real kernel
bigger than 64K.

It is 9load that loads the Plan 9 kernel and jumps to it. But 9load does a bunch
of useful things apart of loading the kernel. For instance, it parses the MBR and
partition table to locate a configuration file (plan9.ini) and maybe a kernel to boot.
That information is read in-memory and kept there, together with the information
about existing partitions that 9load got.

9load parses a file plan9.ini on a specified FAT partition. That file makes a
provision to boot different kernels with different options. Again, simplicity demands,
9load only knows how to read FAT partitions. Therefore, plan9.ini must be kept on
a FAT partition. The standard Plan 9 disk partitions include a small 9fat partition,
guess why?

I now proceed with the source code. Relevant manual pages are booting(8)

(bootstrapping procedures), 9load(8) (PC bootstrap program), and plan9.ini(8).

3.2 Running the loader

Where does 9load start? Look at the mkfile, the first object file linked is l.8 (for
intel). The PBS simply jumps to the first instruction so let’s look at l.s.

3.2.1 Preparing for loading

• /sys/src/boot/pc/l.s:/origin

This is the entry point, running on real mode (emulating an old 8086, yes, ask
Intel).

• l.s:80,81

the data segment is set to be the same that the text segment. The text segment
is ok because we are executing right now, but we know nothing about our data
segment, yet.

• l.s:83,113

set the video mode, say hi. What does it say when it says hi? Look at line 101

and lines :755,764. The author uses the bios to write on the screen, hence int

0x10. That’s a procedure call into the bios code.

• l.s:121,179

skip this. We are not using b.com.

• l.s:181

Now we go into protected mode, loading a GDT and selectors for code and data
segments.

• l.s:240,251

Plan 9 executables assume the BSS segment is cleared. The BSS is where
uninitialized global variables go. They are usually initialized to 0 by the program
loader.
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Figure 3.1: Virtual memory layout while booting.

• l.s:257,285

Identity mapping for the first 16M of memory, and also a mapping at address
KZERO (kernel address 0), which is 2G—the last 2G are conventionally used to
keep the kernel code, and 9load follows that convention. The page table is at
tpt, which is at 0x6000.

• l.s:289,292

Now we have paging. This looks more like a reasonable machine with virtual
memory, and not like an old 8086. C code can do its job now. Virtual memory
looks now like shown in figure 3.1.

• l.s:298

Jump to the address of routine tokzero starting at line :301. The absolute jump
leaves us with the EIP pointing to the address of tokzero in the virtual memory
mapping at KZERO. Note that until now, jumps were relative. This is the first
absolute jump and 9load was linked to execute at address 0x80010000. There-
fore, although 9load was executing at addresses below KZERO (using physical
addresses—and the identity map at 0 after enabling paging), it is now executing
at its proper location.

• l.s:311

Just call main and C code will do everything else. If it ever returns, we loop
forever. By looping, the author hopes to be able to read at least any interesting
message on the console. Don’t loop and you will get a reboot and miss any
message with clues about the boot failure.

main() C entry point for the loader.

• load.c:/^main

This is the entry point of 9load, well, the C entry point—there was some
assembly before. As you see, lines :251,255 are initializing trap handling,
clock, etc. More on that when we see the real kernel.

• load.c:261

The for loop at this line is iterating through an array of known device types.
The array types at /sys/src/boot/pc/load.c:10 defines a set of devices
where 9load knows how to boot from. How do we know what is the type
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of types? Hmmm, there is /sys/src/boot/pc/dat.h file, and there is where
the author likes to put data structure declarations. At line :143 there is a decla-
ration for Type (the initial capital tells us that it is a type or a constant name).
Pay attention to the set of pointers to functions, depending on the value of type
they will point to a function or another. This is how the most useful feature
of object-orientation (polymorphism) is brought to C. And it was brought to C
back in the days of UNIX 6th edition!

• load.c:264

Back to the loop, we call probe for every type (not for ether). The flags mean
“we want a plan9.ini” and “any device will be good for us”.

That routine returns a Medium pointer with information about the probed
medium, including the plan9.ini file. When the returned medium has a
plan9.ini file (known by the Fini flag) we got it. Then line :266 calls dotini
to read and parse the just loaded .ini file.

main

probe() Probe devices for media, seeking for plan9.ini.

• load.c:178,241

Probe iterates again through the array of known boot device types. Why?
The author wants to call probe with things like Tany, to specify “them all”.
Therefore, we iterate in line :188. If line :192 is reached, we are interested on
this device type.

• load.c:192

As initially the flag is not 0, we enter here now. This if is used to retrieve
information found on previous runs about media for this device type. No such
information by now, so the loop is doing nothing now.

• load.c:199

Interesting stuff happens. The flag does not have the Fprobe bit set: this means
the device was not probed and must be probed now. init must be called for
the device type; remember that init points to a function or another depending
on the types array entry—looks like polymorphism. If you look to the array
declaration (:10,31), you notice a floppyinit as the value for floppies.

floppyinit()Initialize the floppy devices.

• devfloppy.c:133

has the entry for floppyinit. I won’t tell you how to probe for a floppy. But
you can feel how I/O proceeds (e.g. :163 is stopping the drive motor).

• load.c:201

The mask is set with a set of bits given by init. The bits are used in the loop
at line :204 to scan for different media on this device type. For instance, you
may have different floppies installed.

• load.c:205,207

When a given media is processed, its bit in the mask is reset—on following
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calls to probe, that media is not scanned. The idea is to link the information
wanted into Media structures hanging from the types array entry. Once the
information has been obtained, it is not interesting obtaining it again; hence
the bit mask.

• load.c:215

The call to initdev simple builds a string with the name for the device repre-
senting this media, e.g. “fd0”.

• load.c:217,233

Remember that the types array had Fini set as a flag? Line :213 set the
media flag to the value of the device flag. That means that the device media
may contain a plan9.ini. now going to check if that is the case. By now, clear
Fini.

• load.c:219,220

Try to locate a partition with name dos or 9fat. The routine doing the work
is getdospart, which again points to one function or another depending on the
device type. For floppies, it is floppygetdospart at devfloppy.c:330. In the
case of a floppy, locating a partition is easy: if it is named dos, it is there. No
matter the device, the partition with plan9.ini must be either dos or 9fat—to
keep 9load simple.

floppygetdospart()Prepare to use a dos partition.

• devfloppy.c:330

It gets a filled-up Dos structure, which allows us to read/seek a FAT partition.
How? well, getdospart fills a Dos structure with pointers to functions that know
how to read and write it. For instance, floppygetdospart is placing pointers
to floppyread and floppyseek. Probe is learning to load a plan9.ini (and a
kernel) from a device step by step.

Besides, floppygetdospart calls dosinit, which reads the first block of the
floppy and initializes structures like the one for the root directory in the parti-
tion.

• load.c:223,231

Ask the dosstat routine to locate a file named either plan9/plan9.ini or
plan9.ini. Both names are kept in the inis array, to search for a different
name we would only add it there and recompile. The array is terminated with
a null entry. That is a usual convention to let routines using an array where
does the array end. It works for strings, and it works for other arrays as well.

dosstat()Check (stat) a file is in the dos partition.

• dosboot.c:446

contains dosstat, it walks the path given and locates the file, starting from
the root directory. Where is the root directory? floppygetdospart also called
dosinit, which used seek and read routines to read bits from the drive and
initialize the root member of the Dos structure.
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• load.c:223,231

When dosstat locates the plan9.ini file, its name is recorded in the Medium

structure and a flag set to note the existence of a plan9.ini on this media.

main

• load.c:264,266

Once probe returns back to main, the user is told the device, partition and .ini

file used; then it calls dotini that reads the .ini using the functions selected
by the filled up Dos structure. Dotini also parses the .ini file.

main

dotini() Read the .ini file.

• conf.c:88 :93 :105,112

dotini calls to dosstat and dosread to read the .ini, and memmoves copy
it to address BOOTARGS (an stat is a good way to check that the file is indeed
there). The dance around id on lines :105,112 is to ensure that the just copied
file image starts with the line ZORT 0, forget it. Later, the kernel will find its
plan9.ini at address BOOTARGS. It would be better to do the parsing just once
here, then copy the cooked arguments for the kernel to address BOOTARGS and
avoid the need to re-parse the whole thing again within the kernel, but the code
is nice anyway, isn’t it?

Well, if you are curious and didn’t forget the ZORT 0 thing, look at /sys/src/9/
pc/main.c:64,65 and :146,147, not a big deal.

main

• load.c:271

Got the configuration parameter, so the console can be initialized. consinit,
at console.c:16.

consinit()Initialize the console.

• console.c:16,38

Initializes an input queue :21 and the keyboard. If the console is not cga, it
must be a serial line. In that case it initializes an output queue and sets up the
serial line. To setup a serial line is a matter of calling uart routines with the
configured baud rate. Note how it can call getconf through consinit to get
configuration parameters. Since now on, the user will see 9load messages at
the configured console.

• load.c:278

As the comment says, it is doing some work for the upcoming kernel. Noticed
the Tany flag?

• load.c:283

Ask for the configured bootfile, which is simply a path as said in plan9.ini.
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• load.c:285,332

The next lines are more complex than they could because they attempt to
simplify things for the user. They permit bootfile=local!9pcdisk.gz and
related syntax. What we are interested in, is that these lines set flag to filter
the set of known boot devices and obtain both the file name for the kernel,
and the media (mp) where it resides. Then they call boot(mp,file) to do the
job.

main

boot() Load and boot the kernel.

• load.c:140

boot records at address BOOTLINE the full path for the kernel loaded (e.g.
fd0!9pcdisk.gz) and calls the media dependent boot routine to do the real
job. Remember that there was a pointer to a boot routine for each device type?

3.2.2 Loading the kernel

boot() Load and boot the kernel.

• load.c:148

Why does boot set state to INITKERNEL?

• load.c:150,156

Notice the static qualifier in didaddconf. The first time boot is called, it
initializes media configuration entries. They are added to remaining entries
found in plan9.ini for the kernel to use. For floppies, there are no extra
parameters. Therefore, the test at line :153 fails and we skip this.

floppyboot()Boot procedure for floppy devices.

• devfloppy.c:204

floppyboot calls dosboot after checking that the file name looks fine. Noticed
that kernel code is always paranoid? Why does the author check that when
load.c got a fine name? Months later, the author could edit load.c and make
a mistake, if devfloppy.c assumes that names are ok, it should check for that,
and it is doing so.

Well, I admit, previous checks for the file name could go away, floppygetdospart
at devfloppy.c:330 is checking for that itself. Nevertheless, this code exposes
what is known as “defensive programming”. Checking for errors that cannot
happen, and failing gracefully when they do happen. On the other hand, 9load
runs just once, before the system boots. Nobody cares if it is comparing against
dos a couple of extra times. That is why nobody cared to optimize this code.

floppyboot()Boot procedure for dos partitions.

• dosboot.c:488

stats the file (i.e., ensures that it is on disk and gets its length along with other
attributes. The call on line :494 is doing that.
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• dosboot.c:507,510

8K at a time, the call to dosreadseg calls dosread to read contents of the
file until bootpass says it has read enough. The buffer just read is given to
bootpass. Once done with reading, a new call to bootpass with a null buffer
tries to boot the kernel. The calls to bootpass, which receive a non-null buffer
and then gets called with null, suggest that bootpass is first recording some
state (i.e. the kernel image) and will use it later on its final call. The state is
being recored in the first parameter.

boot

...

bootpass() Load portions of the kernel and boot it.

• boot.c:28,166

Two things to notice in bootpass. First, the switch on Boot.state at line :43

that may be INITKERNEL, READEXEC, . . . is simply implementing a finite state
automata that builds a kernel image on memory. You start in state INITKERNEL
and make state transitions as you read more kernel bytes. The second thing
to notice is a common error handling trick. When error recovery at several
points in a function requires mostly the same code, a label is defined past the
return point of the function (line :109) and a goto to the label is used to signal
the error. Done with care, this can lead to very clear code. Putting the error
handling code within another procedure (to avoid the goto) would require many
arguments, and it would be very dependent on the function calling it. The way
to read the code is very similar to the way you read exception handling code in
other languages.

I admit that Endofinput is not an error, but the rationale is the same. In this
case, the goto clearly splits the function into the part that processes the kernel
read, and the part that tries to boot it. If you replace the goto with a big then

body including the while below, you would need to indent more, and the if

then-arm would get so big that the code would be less clear.

• boot.c:28

The main data structure used here is b (Why not bp?). It is of typeBoot, defined
in dat.h, and keeps the state for the automata, the header of the executable
and several pointers. The pointers are used to aid in the copy from the buffers
passed to their final memory location.

• boot.c:42,49

For instance, to prepare to get the Exec file header, bp is set pointing to the
start of the target memory location, wp there too, ep pointing to the end of
the target memory, and keep on calling addbytes. Addbytes advances wp as
it gets more calls until it reaches ep. If the given buffer has not enough bytes
addbytes returns non-zero, which makes bootpass to return MORE. The caller
reads another chunk of 8K, calls bootpass, which calls addbytes again. The
next call will continue the copy where it was left at.

The Exec file header is a table of data found at the beginning of executable
Plan 9 files. The structure defines a magic number, sizes of text, data, and bss
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segments, the size of the symbol table, the entry point and the size of a couple
other tables. Everything you need to understand the bytes following the file
header! Where can you find the definition? No clue? Try in dat.h.

As the header fits within the first 8K block, our next state is READEXEC.

• boot.c:51,52

Get a pointer to the exec header just read and check that it has a magic number
I_MAGIC on it. Magic numbers let you know that you got what you expected.
When you compile a Plan 9 file, the exec header will contain an I_MAGIC so you
can later check that it is indeed a binary.

• boot.c:53,57

If it is a binary, our next state is READTEXT, to read the text segment. Before
reading it, set up pointers (bp,wp,ep) to fill up the memory going from the entry
point to the end of the text segment. In effect, the kernel entry point is its first
instruction. (To know where the kernel starts executing in the source code, you
only need to check its mkfile to locate the first piece of code linked into the
kernel image). The call to GLLONG builds an address (long) from the array of 4
bytes entry. Forget about PADDR by now.

• boot.c:62,71

if the check succeeds, the kernel has been compressed with gzip. In that case,
allocate a 1M buffer, readjust our pointer to addbytes to it and transite to
READGZIP state. The compressed kernel will be read and decompressed.

• boot.c:73,75

The kernel format is unknown: jump to FAILED state. Although line :75 suffices,
it is safer to set the state to a value that will cause a panic (line :103) if used.
More defensive programming here.

Lesson: Prepare your code for things that cannot happen. They will
happen and you will save a lot of (debugging) time.

• boot.c:78,84

Assume the kernel was not compressed, if the call to addbytes returned 0, it
was all copied, otherwise return MORE in line :106 and keep on adding bytes. If
it all was copied, we have the kernel text segment in place, loaded at entry (as
said in Boot.exec. Therefore, next state is READDATA.

• boot.c:80

Now, it rounds the end of the text segment to the next page boundary. When
the kernel (later) sets up paging, the text segment could get different page
protections that the data segment. The author ensures here that a kernel page
is either text or data.

• boot.c:81,84

Once more, pointers to the memory being filled up are adjusted. They now
tell addbytes to place bytes being red into the data segment for the kernel.
That segment starts at the first page following the text segment. The code uses
lengths found in the exec header to know how much to put in every segment.
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• boot.c:87,92

Got it all. The kernel needs a base stack segment (bss) too, but it does not
need to be loaded from the kernel image. The BSS contains uninitialized data
that should be set to all zeroes while loading. No more stuff to read in. The
next state is TRYBOOT and it has ENOUGH. The caller calls back again with a null
buffer. The state transition is more of defensive programming, if the callers
keeps on supplying a buffer, it returns ENOUGH as many times as needed, until a
call without buffer instructs us to boot the kernel.

• boot.c:37,38

No buffer, end of input reached.

• boot.c:112,118

This can happen if the kernel file on disk is truncated. Notify that and fail.

• boot.c:121

Read the address pointed to by entry in the exec header. That is the entry
point of the kernel.

• boot.c:123

warp9 will try to boot using that entry point. If it returns, something has failed.
If it succeeds, the current program is both done and gone.

boot

...

warp9() Jump to the loaded kernel.

• load.c:484,490

Forgetting about ethernet, Warp9 calls consdrain to flush I/O on the system
console, and jumps to the entry point. Well, actually it calls the entry point and
if it ever returns, bootpass will fail and cause a panic. I/O on the console must
be flushed because it could be a serial line, and characters could be sitting on
the output queue. The upcoming kernel knows nothing about this early system
console, and it must be terminated now. From now on, the kernel is on its own;
with some help info at addresses BOOTARGS and BOOTLINE.

3.3 Booting the kernel

The relevant manual page here is boot(8). What you should learn here is what
structures there are, and how are basic services started.

We have the kernel loaded at. . . where? The /sys/src/9/pc/mkfile links it with
the entry point 0x80100020 (see the rule for $p$CONF). That was the entry point
found by 9load in the kernel’s Exec header.

We also have protected mode, paging enabled, with identity mapping for the first
16M (so that we can use a kernel virtual address safely to refer to a physical address
below 16M; very convenient). It starts executing the very first instruction of the kernel
(text segment). The system memory looks like that shown in figure 3.2, butnote that
the kernel must still initialize some structures depicted in the figure.
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All the work done by the 9load program was just to get the kernel loaded on its
proper place. The kernel is much bigger than 9load, and also more complex. For
example, although 9load understood just dos and 9fat partitions, the kernel knows
how to handle many other devices.

What is our current program counter? Again, by looking at the mkfile, you see
that the first file linked in the kernel is l.s. The authors follow the rule that the
same thing is named the same way, everywhere. That helps to follow the code. A file
l.s was the first file in 9load too, data structures where in a file named dat.h too,
etc.

Lesson: do the same thing, the same way, everywhere. That will help
when you get back to your program months after; and it will help others.

• /sys/src/9/pc/l.s:30,33

This is the entry point. Clear interrupts, not yet prepared to handle them.
Jump to an absolute address once more. The kernel is repeating part of the job
of 9load. Place for a future cleanup.

• l.s:42,97

Again repeating the job that 9load did, to ensure paging is enabled with a
reasonable initial page table. Looks like 9load was not the first program to
load the kernel, and the kernel itself was initializing bits that 9load handles
now. The kernel only checks that it has the identity map for 4M, although
9load did map 16M. If the current page table is at CPU0PDB, the kernel assumes
to have a valid mapping done and goes to line :113. Otherwise a map for 4M
is done.

If I am not mistaken, 9load set our page table at 0x6000, which is not CPU0PDB.
So, the kernel forgets about the 16M mapping and maps 4M (both at 0, and at
KZERO). The page table is now at CPU0PDB, and the Mach structure at CPU0MACH
(describing the boot processor) knows where the page table is. CPU0MACH is
mapped also at MACHADDR. Although there is a Mach per processor, each one can
see its Mach at MACHADDR. See figure 3.3. The reason is that the structure is
used a lot; but keeping it at a fixed (virtual) address, some time can be saved.
Yet another reason is that a kernel stack for use on each processor is kept in the
page of its Mach structure. The cr3 register in the processor (the page table) is
set to CPU0PDB too. Now you are out of the temporary mapping done by 9load.

• l.s:107,111

The map of KZERO at 0, (identity mapping) is removed. The author does not
want address 0 to be valid to catch null pointer dereferencing. The or at line
:109 is obtaining a kernel virtual address from the physical address of the pdb.

• l.s:113,121

clearing the BSS (9load did that before!).

• l.s:123

The machine (processor) information structure at address MACHADDR, set the
stack there, after the Mach structure.
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Figure 3.3: Mapping of the Mach structure.

• l.s:124

m is a global pointer to the machine structure, initialize it to point to MACHADDR,
which has a map of CPU0MACH.

• l.s:125

it is running at processor number 0 (boot processor).

• l.s:127

The machine structure resides at MACHADDR (0x4000; i.e. 0x80004000 kernel
virtual). Now the stack is set to its current value (MACHADDR) plus the page
size (MACHSIZE). That means that the page where the machine structure resides
(low addresses) is also used for the kernel start (high addresses) from now on.
The -4 makes the stack pointer point to the last word of the page, and not to
the first word of the following page.

• l.s:133,137

Once we are executing in the kernel stack for this processor, popfl can be used
to load 0 from the stack into the flags—i.e. clear them—and the author can call
main to run the kernel C entry point. Note that if main ever returns, the loop
at :143,147 would make the processor halt forever. Interrupts are enabled to
let the kernel attend interrupts but it would halt again later.

Other parts of this file (l.s) have routines that are better written in assem-
bler either because they glue the kernel with hardware facilities or because of
performance.

main() C entry point for the kernel. Initializes it and creates a first process.

• main.c:111

The start of it all. From now on, we will see how important kernel structures are
initialized before the first process is brought to life. Most of them are defined
in dat.h and ../port/portdat.h.
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• main.c:113

Turn off the floppy motor? Yes. 9load used timers to turn off the floppy motor
after a period of idle time. Where is 9load now?. Safety first.

• main.c:137

Look at this line and skip the previous ones by now. Looks like it is redoing the
job of 9load.

In the following subsections I show how different parts of the kernel are initialized
during boot. All of them are simply describing what happens in main.c:130,165.
As we see the initialization of system services, you will learn a bit of how are them
designed and what are the data structures involved. If at some point you feel like
you miss where you are, go back to main and follow the call graph down to where
you are. Remember that everything else shown in this chapter describes how the
...init routines are called from main and what do they do. In the commentary, I
try to preserve the order of execution as much as possible. I suggest you try to read
structure definitions as they appear in the code; for all structures found, you should
try to guess what is each field for.

3.4 Processors and system configuration

main

• main.c:130,133

Plan 9 runs on multiprocessors (MP). Each processor executes both user and
kernel code. When a processor is servicing a system call, it needs to know what
is the current process running there. Instead of using a global variable, an array
of structures (one per processor) is needed. By indexing on the array with the
processor number, the kernel code executing in a particular processor can get
the information about the process running on it. In Plan 9, the per-processor
structure is Mach (see dat.h:144,195). As you can see, it contains a Proc*

among other things. You also know that it also contains a pointer to a page
table and that a kernel stack for use on that processor is found after Mach.

• main.c:130

Starting to initialize the global conf declared below in main.c. It is a Conf

structure, defined in dat.h:67,84, that includes the overall system information
including the number of processors, maximum number of processes, installed
memory, etc. By now, it only knows of the boot processor (other ones are still
inactive). nmach must be 1, then. Later, main.c:140, confinit is called to
initialize remaining fields of conf. We’ll get back to it later.

• main.c:131,133

machp is an array with pointers to Mach structures for each processor. MACHP

is a macro that gets a reference to an array entry. It is probably defined as a
macro to provide other means to reach the machine struct for a given processor.
Besides, it is so simple and used so frequently that it is not probably worth
to pay a procedure call just to use it. Although m points to the Mach for this
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processor, MACHP has to be used to reach the Mach for other processor than the
current one.

The routine sets the pointer to the mach structure for processor 0 (see above in
l.s) and a pointer to the page table being used by this processor. The page
table was initialized before by l.s. Each processor uses its own page tables,
which is reasonable because each one can run a different process on a different
address space. Everything else in mach is set to zero in machinit.

• main.c:134

Ignore ioinit, it initializes IO port allocation. We’ll get back to it later.

• main.c:135,136

Record that cpu number 0 (bit 0) is active. It is not doing a shutdown. The
active structure defines the status of known processors. The kernel can look
at it to see whether a processor is panicing, or halting, or running or not.

cpuidentify()Identifies the processor model

• main.c:139

cpuidentify does two things:

• devarch.c:473,494

It identifies the processor model (recording that in the mach structure)

• devarch.c:495

and starts the timer. From now on, the intel 8253 prepared to generate clock
ticks (more on this later, but note that interrupts are still disabled). The timer
is very important for system operation because it provides the heartbeat needed
to preempt processes among other things.

• main.c:140

confinit has the important task of initializing the idea the kernel has of avail-
able memory.

main

confinit() Initialize conf.

• main.c:369,376

confinit looks at parameters maxmem and kernelpercent from plan9.ini. If
not found there, they are set to a null value and will be adjusted later. maxmem
tells the kernel what is the size of installed physical memory. The kernel could
guess that value as you will see, but on certain cases, the CMOS does not hold
a valid value and it is necessary to force the real value using the configuration
parameter.

kernelpercent is the percentage of memory to be used by the kernel. Remain-
ing memory is used for user processes. The appropriate size depends on how is
the kernel to be used. More on this later.

• main.c:378

The call to meminit initializes the physical memory allocators in memory.c. The
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parameter is a hint about existing physical memory, but meminit will guess by
itself if told nothing. After meminit, we know the number of pages actually
installed. Besides, meminit leaves in conf the address and size for the first
RAM memory block found (base0 and npage0) and also for the largest RAM
block found (base1 and npage1). We’ll get back to meminit later.

• main.c:380,382

Now the total number of pages is known, and it limits the number of processes
to 100 plus 5 more per MByte installed. It is not reasonable to be prepared to
handle more processes than can be afforded with existing resources.

• main.c:383,386

For machines not used as terminals, but as CPU servers, the number of allowed
processes is increased. And in any case, this number is kept below a reasonable
limit. These numbers are a guess from the author about what are reasonable
values for terminals and cpu servers. Probably, they have been adjusted over
time as the author gained experience with running terminals and CPU servers.
Not an exact science.

• main.c:387

At most 200 different images (for files) in memory handled at a time. That
means that on the limit, assuming an image per file, only if there were groups of
10 processes per program running would we be able to reach the 2000 processes
limit.

• main.c:388,389

Establish swap limits as functions of the number of processes allowed. I will
discuss swap in a following chapter.

• main.c:391,408

For kernels running as CPU servers, give an enough percentage of available
memory to the user—i.e. not for kernel— by adjusting the user percentage
userpcnt and limiting the portion for the kernel. The number of images is
increased an order of magnitude if enough kernel memory is available, to avoid
constraining the maximum number of different processes. What is enough kernel
memory? The biggest thing the kernel keeps is a big array of Page structs, one
entry per page frame installed. They estimate that, besides the array, 16MB
plus whatever is needed to keep kernel stacks for processes is a reasonable value.

• main.c:410,424

For terminals, increase the user percentage of memory up to a 40% or a 60%
depending on the amount of memory installed. For small machines it is given
just a 40%.

• main.c:422,423

If a terminal very low on memory, tell the allocator for images to take 4M as
soon as possible.

• main.c:426

Half of kernel pages to be used by the allocator for use at interrupt time—more
on this later.
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• main.c:433,448

The field maxsize of mainmem is updated to reflect the actual available memory
for the kernel. That is the number of bytes in kernel pages minus the size of
arrays for Page, Proc, and Image structures.

3.5 I/O ports

We forgot ioinit before. Let’s get back to it.

• main.c:134

Starting to do resource management now.

main

Ioinit() Initializes I/O port allocation.

• devarch.c:49,61

Ioinit initializes a data structure called iomap that simply records what I/O
ports are in use. If a driver wants to do I/O on a port, it should (note, not
“must”) allocate a it on the iomap. If allocation fails it means that somebody
else is using the port. Any line in the kernel can do I/O at will to any port, but
it is the responsibility of the kernel to note what ports are in use, what ports
are not, and which drivers are using which ports.

Both ioinit and IOMap are defined in devarch.c. iomap holds an array of
maps that represent I/O port ranges (from start to end). Because I/O ports
are a sparse resource (many different port numbers, and only a few used), it
is better to record which ports are in use rather than using a bitmap to keep
the allocation status of every I/O port. The data structure used by Plan 9
fits well with the resource usage because drivers tend to allocate a small set of
contiguous ports. The IOMap defines precisely that.

3.5.1 Port allocation

Let’s stay in devarch.c for a while to see how port allocation works.

• devarch.c:54,57

Maps are linked together on a free list. It is not clear for me why are maps
linked on a free list instead of scanning just the 32 entries for a free map—ports
are not allocated so frequently.

ioalloc() Allocates I/O ports.

• devarch.c:70,123

ioalloc allocates ports using the iomap initialized before. Line :75 is very
important. Not now, but later, multiple processors could be running ioalloc

at the same time. lock ensures mutual exclusion on the iomap. The parameter
to lock is the address of iomap. Any value would work, but every lock requires
an unique value. By using the address of the structure to be locked, the author
has a fine way to give an unique value. Only routines locking that structure
would give that value. Following calls to unlock release the lock. Locks are
discussed together with processes in the next chapter.
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• devarch.c:76,93

Negative port values can be given to request any port within a particular range
(0x400–0x1000). Looks like some device is interested in any port between such
range, and the routine is reused to provide that service as well.

• devarch.c:93,104

This is where allocation happens when the caller specified a port. The loop
starts at the first map and iterates through the next pointer. You see how used
port ranges (maps) are linked together—unused ones are linked on the free list.
Perhaps it would be more simple (and more inefficient) to iterate through the
entire array of port maps. Why does the author use a pointer to the next pointer
to follow the list?

• devarch.c:97,98

If the end of the range is before the port address, it must be further on the list.
The list is sorted.

• devarch.c:99,100

If the starting address of the range lies after the allocated range there is no I/O
map for that range and we reach the break for the loop. Otherwise allocation
will fail—i.e. it is already allocated.

• devarch.c:105,111

The first map of the free list is extracted for this new allocation.

• devarch.c:112,116

The range of ports is noted, and tag is set. Good for debugging and to know who
is holding which ports. The author ensures that the string is null terminated.

• devarch.c:117

That is why the author used pointers to pointers to maps to iterate through the
list instead of pointers to maps. He wants to insert the node in the allocated
port list (sorted). The code already knows where to insert it because the loop
was broken at line :100. By knowing what pointer must be adjusted to point
to the newly inserted node, a new loop to find the insertion point, which would
be a waste, can be avoided.

• devarch.c:119

Everything is a file, and the file representing allocated ports has been updated.
That is why it increments the file version number. More on that later.

• devarch.c:121,122

Allocation succeeds, the map can be unlocked so other processors can gain the
lock; return the starting address of the allocated region.

Port deallocation is easy too.

iofree() Deallocates I/O ports.

• devarch.c:126,144

iofree releases a port. After gaining the lock to avoid races, the allocated map
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list (iomap.m) is searched. If the starting address is the port being deallocated,
the node is removed from the list. Again, the author is playing the pointer-to-
pointer-to-node trick. If the starting address is bigger than the port, the port
is not allocated and nothing has to be done: it is ok to iofree a free port.
To deallocate a range it is only necessary to know the starting port number—
compare to malloc and free.

3.5.2 Back to I/O initialization

• main.c:138

screeninit simply prepares the console to receive characters.

screeninit()Initialize the screen.

• cga.c:100,106

Initialize the global cgaposwith the actual cursor position read from 0x0e-0x0f.
The line :104 is because the CGA memory holds pairs “character:attribute” for
every text character on screen.

• main.c:139

cpuidentify (which you saw before) starts the timer leading to. . .

main

cpuidentify...

i8253init() Initialize the timer chip.

• i8253.c:30,38

i8253init uses ioalloc to request the port T0cntr. This port is registered
as allocated, and nobody else will (should!) use it. At this point, the kernel
is starting to use resource allocation. I will ignore the rest of i8253init. But
note that the clock will be sending HZ ticks (interrupts) per second.

3.6 Memory allocation

Before looking at meminit let’s take a look at kernel (physical) memory allocation.

• memory.c:31,34

The kernel has to keep track of which parts of memory are there, which ones are
allocated, and which ones are free. The Map specifies a memory range starting
at the physical address addr.

• memory.c:36,42

An RMap (RAM map?) holds a list of maps and is the real allocation data struc-
ture used through memory.c. Every Rmap is given a name, for debugging, and to
know what kind of memory it is managing. Pay attention to the Lock. It is used
to achieve mutual exclusion between different processes doing (de)allocations.
Routines mapalloc and mapfree operate on Rmaps, so they are used to allocate
and deallocate any kind of memory.
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• memory.c:44,71

On the PC, there are several kinds of memory:

– The memory up to 1M can support I/O and DMA. It is called conven-
tional memory (from 0K to 640K) and upper memory (from 640K to 1M).
For upper memory there are two maps, rmapumb and rmapumbrw because
some upper memory blocks (UMB) may hold device memory (read only)
and some others may be used like regular ram (RW). Some conventional
memory will be placed under mapram.

RO memory is placed under the allocator too. It is not for r/w, but drivers
must allocate the portion they want to read to refrain other drivers from
operating on devices using it—and also to know that the memory is really
there!. That is the way multiple drivers whose devices get mapped on the
same slot can avoid interfering with each other.

– Memory from 1M up to 16M can do just DMA.

– From 16M on, neither I/O nor DMA is supported.

Different RMaps are used for each region. The names tell you which kind of
memory you are referring to. The rmapram is used for memory that can be
read and written, and is not used by device I/O; i.e. it is regular RAM. For
memory below 16M that can be used for devices, rmapumb and rmapumbrw are
used. The first one is used for ROMs showing up as UMBs; and the second for
device memory that can also be written.

Another interesting thing is the couple of upa allocators. That is memory that
does not exist. The kernel has the addresses, but there is no memory there. The
memory will appear when a particular device supplies it. More on this later.

mapalloc () Allocate memory from a RMap.

• memory.c:150,205

mapalloc is fairly easy to understand. If the addr is zero, it understands “I
don’t mind where the memory is allocated”. In general, you don’t mind. But
sometimes a particular driver needs a particular region of memory to interact
with the device (e.g. a video frame buffer). Note also the usage of the parameter
align, which can be used to allocate aligned memory (For instance, a page frame
could be allocated by using the page size as align). By the way, is it first fit?,
best fit? worst fit? Hint: they kept it simple.

In lines :196,198 they release the (prefix) unused portion of the allocated map.
The routine is more simple than it could be because it behaves like allocating
from the starting of the map to the end of the actually allocated memory, and
then it uses mapfree to release the memory going from the starting of the map
to the start of the allocated memory. They could call mapfree another time to
do the same with the trailing unallocated portion of the map, but looks more
simple to adjust the existing map to represent that trailing portion. The data
structure is unlocked before the (possible) call to mapfree, which acquires the
lock on its own.
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• memory.c:106,148

After searching for the position in the list where the memory should be placed,
three things can happen:

1. The previous map ends right before the memory being released: opportu-
nity to recombine and avoid fragmentation. Add the memory to the end of
the previous map in line :118, and move following fragments to the left in
the map list. It stops on a map with length 0. map structures are neither
allocated nor deallocated, their length will be zero if they are not useful
(cf. lines :188,189).

2. The released memory ends right before the next map. Recombine the
memory into the next map.

3. No luck; must insert the map by moving next ones to the right in the list.
When there is no room for more maps the last one is dropped: the list
is overflowing to the right. If you see the “loosing” message, you should
increase the number of entries in the map and recompile the kernel: your
system may need more maps of that kind.

Given the small number of maps in rmaps, won’t the kernel run out of maps
early? Not so easily. Maps are used either by devices (and they allocate only
a few ones) or to allocate dynamic kernel memory. What the author is doing
is to use these low level “ram maps” to keep track of what memory banks are
installed on the system, and what kind of memory they keep. For dynamic
kernel memory, another allocator of smaller grain is built on top of the memory
supplied by the rmap. So, you won’t run out of maps easily. The source of the
dynamic kernel memory allocator is at ../port/xalloc.c.

Memory initialization

Now, let’s get back to meminit. It must fill up the RAM maps and set page transla-
tions for existing memory (only 4M mapped by now).

main

confinit

meminit() Fills up Rmaps and builds an initial page table.

• memory.c:421,428

First, entries in the page table used by this processor (m->pdb) are updated for
the upper memory. The range for video memory is set write-through (you don’t
want the cache to retain just written pixel values). The range used by ROMs
and devices you want to be uncached, to interact with the devices directly.
The routine mmuwalk returns a page table entry (pte) given the virtual address.
Remember that below 4M physical addresses were mapped one-to-one at KZERO?
KADDR remembers: The author knows it cannot use physical addresses, because
the kernel is also running with paging enabled (i.e. using virtual addresses). A
physical address is converted to a kernel virtual address by using KADDR (i.e. by
adding KZERO). That is because for kernel usage, physical memory is mapped at
virtual addresses starting at KZERO. Although right now not all physical memory
is mapped at KZERO, that is going to change soon.
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The page table being updated it the one for the boot processor, it will be used
later as a template to setup new page tables.

• memory.c:429

Every protection change on the page table requires a TLB flush. Otherwise,
until the next context switch, entries within the TLB would retain the old
protection flags. You will see mmuflushtlb in the virtual memory chapter.

• memory.c:431,432

These two routines scan available memory and fill up Rmaps accordingly. The
author probably wrote two routines because unlike regular RAM, upper memory
must take into account video memory and the like. These routines update the
page table for the kernel to make KZERO be the starting of a map for all physical
memory. Bby now, KADDR can be used only for physical addresses within the
map at KZERO, which are just 4M. Starting to fix that now.

• memory.c:440,452

conf is updated to keep the address (base) and number of pages (npage) of the
first RAM map; it is also updated to keep the address and number of pages of
the biggest map. Hopefully, on the PC, the first map would be conventional
memory, and the second one will contain all extended memory.

But, how do umbscan and ramscan work?

Filling up allocators

main...

meminit

umbscan() Scans for UMB blocks.

• memory.c:208,253

umbscan starts looking past the end of video memory up to the ROM signature
at 0xc0000. It does not go up to 0xf0000 because a two-byte check at 0xc0000
can tell us if there is a ROM mapped there by the hardware or not.

• memory.c:228,229

At each pass, it writes the first and last byte of every 2K chunk with 0xcc.

• memory.c:230,233

If reading back those bytes does not yield the just written value, it is not real
RAM. It must be a ROM then. So rewrite p[0] and p[1] just to be sure that
if they were on registers (as dictated by the compiler), their values are in sync
with the real value in memory. Not sure why they write p[2], but could be for
a similar reason. p[2] seems to contain the number of 512 byte blocks at the
ROM scanned.

• memory.c:234

If the two bytes starting the 2K block match the values just written (the signa-
ture of a ROM), skip the number of 512 byte blocks recorded by the ROM in
the third byte. This portion is not kept in the allocator.
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• memory.c:238,239

If the two bytes are 0xff, make the memory available for read-only allocation
by calling mapfree (Note the rmapumb map and not the rmapumbrw map). Re-
member that it is not regular RAM because the read value was not what the
routine wrote. But blocks marked with 0xff seem to hold device RO memory
for us to read.

• memory.c:241,242

It was regular ram, so make it available for allocation. Adjacent maps will be
coalesced.

• memory.c:246,252

Finally, looks like if the first two bytes at 0xe0000 are 0xff, not signed by a
ROM, and not regular RAM, indicate that there is device memory (64K) for us
to read. Place the memory in rmapumb.

main...

meminit

ramscan() Scans for regular RAM blocks and updates the page table.

• memory.c:256

umbscan was easy, tricky because of PC messy memory management for IO
devices, but easy. Now, ramscan has the important task of updating the the
kernel page table to reflect the installed ram. Besides, it fills the ram map as
memory gets scanned.

• memory.c:274,276

The routine leaves untouched the range from 0 up to 0x5fff. If you look at
mem.h:33,39 you will see some stuff, going from the interrupt descriptor table,
and information from 9load up to the Mach structure for this processor at
0x5000 (see figure 3.2). Therefore, start by putting into the rmapram allocator
memory going after the Mach structure up to the end of conventional memory
(640K). To determine the end, it reads BIOS information at 0x400—again, a
very low address better left untouched.

• memory.c:278,280

From 640 up to 1M we had the UMBs scanned before, and from 1M on we had
the kernel loaded. (Looking that the mkfile you see how the image is linked to
start at kernel virtual address 0x80100020 which leads to 0x00100020 physical
address). So, only memory from the end of the kernel upwards may be used now.
The author gives to the allocator the memory starting at the end of the kernel.
The linker places the symbol end at the very end of the kernel image, past the
data and bss segments (note that our stack “segment” is actually a bunch of
bytes after our Mach). How much memory do you have? By now, the author
places in the allocator at least MemMinMB MBytes. That has to be a reasonable
low value. By allocating at least that, the author can use the allocator in the
following code that scans for more available memory.

• memory.c:290,301

If no hint was given about how much memory is installed, it makes a guess
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by reading from CMOS the configured value. In any case, pretend to have at
least 24 MBytes. The PC is not so good at letting the system know how much
memory is installed, there are many variants out there. Most of the complexity
of umbscan and ramscan has to do with the idiosyncratic nature of the PC.

• memory.c:309,314

Starting at the page after end+MemMaxMB, it is going to check one MByte at a
time if the memory is there or not. The trick is to write a silly value (line :312)
at the first word of the Mbyte being tested, and see if we can read it back. If
the write did work, there is memory. The author is saving the value actually
stored at address KZERO, can you guess why?

• memory.c:320,321

While it scans for memory, a page table reflecting the actual memory installed is
built. So, the physical address scanned is converted to a kernel virtual address,
and used to index into the first level page table. table points to the entry in
the first level page table (page directory, or PD) corresponding to the virtual
address scanned. Now going to update the “image” of physical memory mapped
at address KZERO to reflect the memory actually installed.

• memory.c:322,328

If the entry is null, there is no secondary page table, and it must be allocated. In
line :326 the entry in the PD is updated to be valid and point to the secondary
page table (PT) just allocated. By zeroing it, the routine invalidates all its
entries—valid bit is zero. Line :327 is reseting a counter that we will discuss
below. Saw how it can allocate memory while filling up the allocator? It was
convenient to place a few Mbytes there at line :280.

• memory.c:329,330

Now getting a pointer to the secondary page table entry for the virtual address
scanned. The macro PPN gives the physical page number (a physical address,
actually).

When the author gets a pointer he pretends to use, it must be a kernel virtual
address (i.e. bigger than KZERO). However, page tables keep physical addresses.
Do you get the picture?

• memory.c:332,332

Establish the mapping by setting the physical page address, the valid bit, and
write permission. The flush must be done too, remember why?

Since the PTEUSER bit is not set in the entry, only the kernel (ring 0) can access
this virtual memory page.

• memory.c:344,372

Here is the actual scan for memory. The commentary is a “must read”. mapfree
is used to place memory under the allocator; its parameter is one of rmapumb

(UMB memory), rmapram (Real memory for use), and rmapupa (Memory that
seems not to be there). For regular RAM, enable write permission for the MMU;
for UMBs (i.e. device memory), set it uncached to get straight to the device
memory; and for “phantom” RAM, clear the map.
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The *pte++=. . . is used to update the mapping and advance the pointer to the
next page table entry. Each of the three if arms map a whole Mbyte at a time
once the check for the first word of the Mbyte tells us the kind of memory there.
To know why one MByte at a time, ask yourself whether you can install on
your PC less than a MByte of extra memory. Another thing to note is that
the author is counting in nvalid how many pages are available. The counters
are reset at the beginning of a 4MByte block, i.e. at the beginning of a page
mapped with the first entry of a secondary page table.

• memory.c:383,393

And here is why. On the PC, a first level page table entry can be used to map
a whole bunch of 4MBytes (called a “super-page”), without using any second
level page table. If the page address starts at a 4Mbyte boundary, and the pages
on the 4Mbyte block just scanned are of one kind, the entry in the first level
page table (*table) can be used to map the 4Mbyte block. nvalid knows how
many pages there are of each kind.

• memory.c:392

When the “super-page” map is not used, the pointer to the secondary page table
at map is cleared. Next time it is checked at line :323, a new (secondary) page
table is allocated for the next 4Mbyte chunk. If a super-page map was used, the
pointer is not released and the memory used by the old secondary page table
(now unused) will be reused for the next non-existing but needed second level
page table.

• memory.c:398,399

Perhaps the routine used a “super-page” and saved an allocated second-level
page table that now is unnecessary.

• memory.c:340,401

And perhaps maxmem is not page-aligned. Place the remaining part of maxmem

within the not-existing memory allocator.

• memory.c:402,403

In any case, ensure that from maxmem to the end of the memory range the
“memory” is registered as not backed up. Imagine that later someone plugs in
a PCMCIA memory card, memory will be moved (allocated) from rmapupa to
(deallocated) xrmapupa. Now the kernel can ask for memory at xrmapupa and
use it.

• memory.c:406

Finally, restore the word at KZERO messed up previously for memory checking
purposes. Kernel allocators are filled up reflecting the actual memory installed
in the system, and the mapping starting at KZERO has entries appropriate for
the whole physical memory.

Dynamic kernel memory

As we saw, the RAM map allocator is not enough to provide dynamic kernel memory.
It was good at registering (un)allocated contiguous portions of memory areas in the
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system, but it is good just for big chunks of memory. Also, it is not to allocate
and free repeated times a given portion of memory because it would not tolerate
fragmentation—remember that it may even drop the last fragment?

The map is used during boot to allocate UMB areas for devices, and to collect
available RAM for dynamic memory allocation. It is xalloc that collects that RAM
for later use by the dynamic memory allocator.

• main.c:142

the call to xinit initializes the allocator.

main

xinit() Initializes xalloc with blocks from the Rmaps and tells palloc.

• /sys/src/9/port/xalloc.c:45,84

It initializes a list of “holes” (i.e. memory to allocate) given the informa-
tion in conf. It uses the first and the biggest chunk of RAM, as recorded in
npage0/base0 and npage1/base1. Perhaps it would have been better to turn
Rmaps into the interface between the machine dependent and the portable part;
the PC part could fill it up, and xalloc could collect those RAM maps found
in the appropriate rmap. Probably the author’s reason not to do so is that some
other architecture may not need resource maps at all and its implementation
(conf memory banks) is admittedly more simple.

Although the collected memory should be enough, xalloc could run out of
memory, yet have more memory available in rmaps—despite the recombination
of fragments done by rmapfree will make its best to end up with a big map
holding most of the installed memory. In any case, you better avoid dynamic
memory if you can allocate an array of structures and keep on using it. Memory
fragmentation is not to be underestimated.

• xalloc.c:57,66

Pages (page frames) are removed from the bank 1 in conf and added with xhole

to the allocator. palloc.p1 is initialized with the starting address for the pages
removed; this is not relevant for us now, but palloc is the source for page
(frame) allocation in the system, and fields p0, np0, p1 and np1 are used for
that. As it happens in conf, the author maintains information about just two
memory banks.

At most conf.upages are placed in xalloc. Those pages are to be used for
user stuff.

• xalloc.c:68,75

Pages are removed from the bank 0 in conf and added with xhole to the
allocator. palloc.p0 is initialized too.

• xalloc.c:77,78

The number of pages placed under allocation is recorded in palloc’s np0 and
np1.

• xalloc.c:79,82

Until now, conf recorded physical addresses for banks 0 and 1 (xhole receives
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physical addresses, as rmaps do). But from now on, conf records kernel virtual
addresses for both banks. One point here is that from now on npage0/npage1
do not keep the number of pages in each bank, but the uppermost bound for
each back; perhaps this is a bit confusing.

Try to understand yourself how other xalloc routines work. Take a look first to
the data structures near the top of the file. While reading them, note how ilock is
used to prevent race conditions—you will learn why in the process chapter. I suggest
you start by reading xalloc (xallocz, actually), thenxfree, finally the other ones.

There are 128 (i.e. Nhole) memory pools. Are they enough to use xalloc as a
generic allocator? No. xalloc should be used just for big, long-lived, kernel data
structures.

• ../../libc/port/pool.c

For actual dynamic memory the kernel uses pools. pool.c implements generic
memory pools where memory can be allocated and deallocated. By using dif-
ferent pools for different purposes, fragmentation can be fought. Pools are like
“arenas” in some programming languages. In fact, pool.c is in libc/ and is
used by user programs as the C library dynamic memory provider. Pools are
appropriate for allocation of even small and short-lived data structures. Frag-
mentation would be contained within the pool.

• /sys/src/9/port/alloc.c

As the pool interface is generic, hence more complex than it ought to be, a
regular malloc interface is built on top of the pool interface, in alloc.c. malloc
is very much like poolalloc, but allocates memory from a 4MBytes pool. There
are a few differences regarding the C library malloc interface.

• alloc.c:21,36

A pool is declared for malloc. Note the generic programming again. Routines
are placed into the pool to allocate more memory for the pool, merge, lock, un-
lock, print, and panic on the pool. xalloc is used as the allocation routine. You
already saw a bit of generic programming before, when the routines to process
plan9.ini worked independently of how to read and seek on particular devices.
The trick was to use pointers to functions and stick to a well defined inter-
face. The code called read and seek using the interface (the function prototype)
without knowing what was the actual function used.

As pools are generic, they use routines noted in lock and unlock fields to allow
concurrent usage of the pool. For malloc, the routines end up using ilock on
a Private.lk field. This contortion is needed because it is malloc who knows
how to lock things in the kernel, yet pools must be able to acquire locks.

smalloc() Allocates zeroed dynamic memory (must succeed).

• alloc.c:172,177

A smalloc routine is included to request dynamic kernel memory when the
allocation must succeed. When there is not enough memory, it makes the caller
sleep for a while and tries again; and so on until it gets the memory. There are
several places in the kernel where the author prefers to wait for memory instead
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of reporting a “not enough memory” error; smalloc is used there instead of
malloc. smalloc zeroes the memory allocated.

malloc() Allocates zeroed dynamic memory.

• alloc.c:186,199

malloc is like malloc, but it zeroes the memory allocated. That is both for secu-
rity issues and to be sure that anything allocated there gets a reasonable initial
value: nil pointers, zero counters, etc. Shouldn’t malloc just call mallocz?

In all these routines, setmalloctag is used to record the PC that called the
allocation routine. That is to find out who is guilty for bad usage of memory
allocation routines; and also to know who is using a given portion of memory.
All in all, for debug purposes.

Apart from these details, the code should be easy to understand. While reading
the file, ignore the pimagmem pool, used for program Images but not related to
the malloc interface. It seems to be declared in alloc.c to reuse the locking
and debugging routines that operate on pools near the beginning of the file. By
making them receive a Pool and not use directly the mainmem one, they can be
applied to pimagmem too. Shouldn’t these generic routines be moved to pool.c?

So, regular dynamic kernel memory (i.e. malloced one) comes from malloc (or
smalloc, or . . . ) in alloc.c, which in turn uses a pool (initially 4MByte) supplied
by pool.c, confining fragmentation to be inside the pool. Several pools are used
for different things (malloc and Images, by now). Pools are fed from RAM maps
corresponding to installed memory. The lowest level is necessary to discriminate
RAM of different kinds, the next one to reduce fragmentation, and the upper one as
a convenient interface.

3.7 Architecture initialization

• main.c:141

archinit sets up a generic interface to operate on this particular architecture
model. Yes, it is a PC, but there are very different kinds of PC.

• dat.h:216,229

This is the interface to highly architecture dependent routines, they vary from
one PC model to another or they must be performed only at particular PC
models—this is very useful to make the code work for both multiprocessor PCs
and regular PCs.

main

archinit() Initializes architecture specific procedures.

• devarch.c:535,542

The way to select concrete implementations is to scan a table of known archi-
tecture models and set the global arch pointing to the right entry. A generic
entry is used if the exact model is unknown.
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• devarch.c:544,556

Conventions are used to make more simple the table of knownarchs. If any
routine is not specified by the selected entry in knownarchs, it is defined as the
generic routine. Looks like, in Object-Oriented words, knownarchs is redefining
routines for concrete archs and inheriting everything else from the generic one.
Simple yet effective.

• devarch.c:560,563

Pentiums and above have a Time Stamp Counter (tsc) builtin that counts the
number of cycles gone in the processor. It is better to perform time measures
than the external programmable clock. If you know the Hertz the machine is
running at, you know the exact time since the last time you reset the tsc counter.
Forget everything else in archinit by now.

3.7.1 Traps and interrupts

Traps are important because system calls, page faults, and other traps (exceptions)
are used to request some service from the kernel (perform a system call, repair a page
fault, etc.). The intel has several protection rings. Plan 9 uses 0 for kernel and 3
for users. Each ring has its own stack. The stack used for ring 0 is the kernel stack.
When the hardware detects a trap, it saves the processor context in the kernel stack.
After that, what happens depends on the entry for the given trap number in a table
called IDT (interrupt descriptor table). That table contains “pointers” to routines
that handle the trap. As the Intel has segmentation, each entry contains a small
number to describe on which segment the routine resides. The small number is used
as an index into a Global Descriptor Table (or GDT) that contains descriptors for
segments in the system (base address, length, protection). The whole picture was
seen at figure 1.2. You already knew this, right?

Remember that code segments determine the protection ring you are running at.
There are different text and data segments (as well as other extra segments courtesy
of Intel) for users (ring 3) and kernel (ring 0). Other than protection, hardware
segments are used almost for nothing else in Plan 9. The paging hardware is all the
kernel needs.

By the way, you know which one is your current kernel stack, but beware that it
would be a different one as soon as you get real processes running and such processes
issue system calls. Each process has its own kernel stack used by the kernel to service
its traps.

I won’t say more about how the Intel hardware deals with traps and interrupt as
I feel this is enough to understand the code.

• main.c:143

trapinit is called to initialize trap handling.

main

trapinit() Initializes interrupt and trap vectors.

• trap.c:142,163

trapinit fills up the IDT with entries for the 256 trap numbers. Each entry
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in the IDT has several fields. Fields d0 and d1 hold the address for the han-
dling routine. Plan 9 keeps in vectortable the routines handling traps and
interrupts. Lines :145, :160, and :161 store the routine address (vaddr) using
the two fields d0 and d1. Ask Intel why you must use two fields to store one
address. The KESEL at line :161 is specifying that the routine address refers to
the kernel executable code segment; i.e. the processor will jump to ring 0 and
execute the routine in kernel mode. See figure 1.2.

• trap.c:145

For all traps, set the “present” bit in the entry (SEGP). That tells the hardware
that the entry is valid.

• trap.c:148,154

Why not fold these two branches? For breakpoints and system calls the entry
is set up as an “interrupt gate” at privilege level 3, that is, user code is allowed
to issue an int instruction to perform a system call or to notify a breakpoint.

• trap.c:156,159

For any other kind of trap, the privilege level is set to 0 (kernel). That means
that those traps should not be “called”. Well, the page fault trap and others are
among them. And they should not be called. It is just that the hardware can
generate them, but users cannot use an int instruction to request such traps.
If users try to do so, they will get a protection fault—which is yet another trap
generated by the hardware.

• trap.c:162

Use the next entry in the vector table for the next trap. The pointer is incre-
mented in 6 characters each time, not in 4. Why?

• l.s:549,805

In l.s you see that the vector table does not contain pointers to handlers,
but instead, it contains binary code to call the handler (the byte after the call
is a parameter specifying the trap number). The code calls strayintr (or
strayintrx) in l.s. These are the interrupt handling procedures pointed to
by IDT entries. By using the table, trapinit can forget about which traps get
an error code pushed on the stack, and which ones do not get it. Depending on
that fact, the author calls strayintrx or strayintr to ensure the kernel stack
has always the same layout after a trap. The latter pushes the “error code” (the
interrupt number, actually) by software, as the hardware did not do so.

Should the intel hardware push always the error code, vectortable could go
away and entries in the IDT point just to strayintr or to syscallintr.

• l.s:614

For system calls, the vectortable does not call strayintr (common trap han-
dling), but syscallintr instead. Having a common trap handling piece of code
simplifies things (it avoids duplicated code), but it can make you run slower.
For system calls, the call path continues at syscallintr, in plan9l.s—it does
only the strictly necessary to prepare for calling syscall and proceed with the
system call. More on this later, let’s get back to regular traps.
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strayintr() Interrupt handler (no error code pushed by the hardware).

• l.s:514

strayintr simply provides common code to jump into intrcommon. It pushes
the trap number so that all traps have an error code pushed in the stack together
with the saved processor state.

intrcommon() Entry point for interrupt/trap handling.

• l.s:521

Once the stack looks the same for all traps, intrcommon saves the data segment
(which may be the user data segment) and loads the kernel data segment (Re-
member that the text segment is already ok, because the hardware did set it
up as described in the IDT.) Afterwards, data memory references refer to the
kernel data segment. This can be done because after the trap, the processor
is running at ring 0; the user cannot load segment registers because that are
privileged instructions.

• l.s:528,534

Now, after other segment descriptors are saved (user’s) and loaded (kernel’s),
and after the whole set of registers is pushed in the stack,intrcommon prepares
for calling trap to do the trap processing. The stack at line :535 has the saved
processor status (made by the hardware) together with the registers just saved.
If you look at /386/include/ureg.h you will see how:

– l.s:534

General registers (top of stack) were last pushed.

– l.s:532,533

Some extra user segment registers (fs and gs) were pushed before.

– l.s:524 and :528

Another user extra segment (es) and the user data segment (ds) were
pushed before.

And before that, as briefly pointed out before, the trap number and error
code where pushed, either by the hardware or by strayintr.

Finally, even before that, the hardware pushed the processor context that
was going to be clobbered when the hardware calls the trap service proce-
dure.

The kernel has now in the kernel stack anUreg for the saved context.

• l.s:536,537

By pushing the stack pointer, the author sets up the Ureg* argument of trap,
and finally calls trap.

The just saved user register set will be used when returning from the trap to
restore the user processor context. By restoring it, you jump back to user code.
If any register is modified in the Ureg, it will be modified the next time the user
process runs, after returning from the trap.

forkret() Returns from interrupt/trap handler.
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• l.s:539,547

Although a routine on its own, forkret is the code executed if trap returns.
If you look at it, it restores the processor context from the Ureg pushed by
the hardware and intrcommon. The IRETL instruction is a very interesting one
because it reloads the processor with the context saved by the hardware on the
trap. This means that it also restores the code segment and the stack segment
and places the processor back in protection ring 3 (i.e. userland).

By now we skip trap handling. We will get back to it when discussing processes.
But we had a pending discussion of syscallintr.

syscallintr() Entry point for system call trap handling

• plan9l.s:31,52

This is the call and return path from user to kernel and vice-versa during system
calls. After the vectortable dispatches to syscallintr there is lean (i.e. fast)
code to get the Ureg on the stack; after the call to syscall there is again lean
code until the IRETL. Compare this call path with the one the processor would
follow by going from strayintr down to trap, and then switching on the trap
number and checking some stuff, calling syscall and back. System calls are
discussed later. The code is in trap.c:471,539 though; and it dispatches using
a system call table found at ../port/systab.c.

The point is that after main.c:143, the kernel is prepared to service system calls
as well as other exceptions. After reading all this code, you now know what that
means.

3.7.2 Virtual Memory

We skip printinit by now, to continue with low-level glue initialization.

• main.c:148

Interesting things begin to happen. mmuinit will initialize the MMU data struc-
tures. Yes, the kernel already has a page table, but it would not even be able
to do a context switch. Let’s see how this thing works.

main

mmuinit() Initializes the MMU.

• mmu.c:48

The intel is quite bizarre at supporting processes for systems software. It tries
to do it all, and most operating systems have to do some contortions to use
what it provides whenever they prefer to implement a different thing. This line
is allocating a “Task state segment”. That is the data structure used by Intel
to describe a Task. It is needed because the processor uses that “segment” to
switch to a different protection ring on a trap. Remember that I said that the
hardware saves the processor context on the kernel stack when a trap happens?
How does the hardware know what is the kernel stack? It might not be your
current stack when you have a process running.
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At any time, the “Task Register” is loaded with a descriptor into a task state
segment (TSS). It is a memory segment as any other, but it describes the cur-
rent task for the hardware. The selector loaded into the task register selects a
descriptor from the GDT (Global descriptor table) that points to a TSS.

• dat.h:109,136

The TSS contains among other interesting things, esp0, the stack pointer to
be used at ring 0. When a trap places the processor into kernel mode, the
hardware obtains the esp0 in the TSS loaded at the task register, and uses that
stack to save the faulting context. If the processor was already in kernel mode,
the context is saved in the current stack. Remaining fields of the TSS contain
the supposedly last saved context for the task. On Intels, you can use a call
or a jump instruction into a TSS to switch from one task to another, and the
hardware will save the previous task context, and load the next one. This is so
slow that almost nobody uses the TSS to implement the context switch for OS
processes. In fact, in mmu.c:20 you see how there is just one TSS descriptor
for all processes, which means that the TSS is used just to make the hardware
work.

• mmu.c:51

The GDT used until now, just for booting, is copied into the machine structure
for the current processor. The kernel is getting out of the initial (and weird)
data structures used just to boot. The current flow of control is on its way to
become a regular process on a regular processor.

• mmu.c:53,34

The descriptor in the GDT for the TSS is updated to point to the just allocated
TSS. It will run at ring 0.

• mmu.c:56,60

Concoct a descriptor for the GDT and load it into the GDT register. Now using
the GDT for this processor. The kernel is almost prepared to officially switch
to the new TSS.

• mmu.c:62,66

Remember that the IDT was initialized at address IDTADDR? Now the kernel
loads the IDT register. Until now the kernel were not really prepared to service
traps nor interrupts—I lied. But now the hardware knows that the IDT has some
new stuff in, because the register was reloaded. Did you notice that interrupts
are still disabled?

• mmu.c:68,74

Protections for the kernel text pages are changed not to be writable. This could
be done before while the page table for the kernel was initialized during memory
scan, but that’s not a big deal.

• mmu.c:76

taskswitch loads in the TSS of the current processor the given stack pointer for
all protection rings (and also sets the stack segment as the kernel data segment
there). It also loads in the TSS cr3 register the given page directory pointer.
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cr3 is the pointer to the page table. Besides noting it within TSS, taskswitch
loads the pdb into the processor cr3 register. Note the “kernel stack” passed
to taskswitch. It is the address of the Mach processor plus the page size. The
kernel stack resides after the machine data structure. Not a big kernel stack.
Remember that such stack is given to taskswitch so that it could initialize
esp0 to point to the kernel stack for the current task.

• mmu.c:77

Finally, the task register is loaded with the selector for the TSS just created,
and the kernel becomes an official task for Intel. This just means that when we
get up to user level, the processor will use the right stack to service traps and
interrupts: the kernel stack specified in the TSS.

3.7.3 Traps and interrupts (continued)

• main.c:149,150

If the arch structure filled up by archinit has a routine to initialize interrupt
handling code, it is called now. If no such routine exists, it is assumed that
interrupts are already initialized.

main

i8259init() Initializes the PICs.

• devarch.c:377

For the “generic” PC, i8259init is used as intrinit.

• i8259.c:33,102

This file contains code for the i8259 programmable interrupt controllers (PICs).
In the PC, there are two ones routing 8 interrupts each. The two i8259s are
cascaded to dispatch up to 15 interrupts to the processor (one of the 16 ones is
used to cascade the chips). Even though the programmable timer was initialized
time ago, no timer interrupt ever reached the processor because the intermediate
i8259s were not initialized. See figure 3.4.

• i8259.c:37,38

Allocate control ports for both chips.

• i8259.c:39,102

Comments make the code self explanatory. In any case, by the end of the routine
both chips route interrupts in their way to the processor; The PIC is supposed
to dispatch its 16 interrupts starting at VectorPIC. The hardware uses the
interrupt vector offset to index into the IDT. Therefore, interrupts numbered
VectorPIC through VectorPIC+15 correspond to PIC dispatched interrupts.

• i8259.c:29

The mask (i8259mask) programmed on the i8259s and the cleared interrupt
enable flag in the processor status word are avoiding interrupts from happening.
But since the kernel already has a working TSS, IDT, and handlers for the IDT
entries, it is mostly ready to service interrupts.
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i8259

i8259

intr_enable_bit

Processor

A device

mask

mask

Figure 3.4: Interrupts arrive from the device though the PICs. The PIC may mask
each of the interrupt lines. The processor must have interrupt enabled in flags to
notice interrupts.

• main.c:151

The PICs just initialized are used by ns16552install, which shouldn’t be called
here, but by chandevreset instead. My guess is that for kbdinit and to allow
a serial line based console, the serial line (i.e. UART) initialization is being
done here, or maybe this is a fossil if any time back in the past devices were
initialized right from main. Although the code is still clean and easy to follow,
it could be an alternative to place most regular initialization routines under the
control of chandevreset, and let it resolve dependencies. But that could also
be a recipe for disaster if the (generated) chandevreset code would not honor
dependencies. Forget this brief guess if you didn’t understand, it is not relevant.

main

ns16552install() Sets up the uarts.

• ns16552.h:82,111

ns16552install allocates ports for the serial lines (two ones, eia0 and eia1).
Then ns16552setup initializes the two UARTS.

• ns16552.h:99 and :103

intrenable is called to request that IrqUART0 and IrqUART1 interrupts be
enabled (not masked by the PICs) and handled by the ns16552intrx routine.
We’ll get to intrenable a bit later.

• ns16552.h:106,110

If plan9.ini said to use a serial console, setup the specified serial port so that
its input and output queues are used for kbdq (the queue for keyboard I/O) and
printq (the queue for console output I/O, as we saw before). ns16552special
sets the pointers passed (kbdq and printq) to point to the Uart input/output
queues. So, anyone reading from the “keyboard” will be reading from the Uart
input queue, that will in turn be written by the serial line driver as characters
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come in. The rest of ns16552intall simply initializes the several kinds of serial
boards you may have installed. We will ignore that.

main

...

intrenable() Enables an interrupt and installs its handler.

• trap.c:19,57

Going down to intrenable, it enables the interrupt irq after setting up an
Vctl structure for the interrupt. Although we did not look into trap, note that
it is also called by interrupts, which are handled like traps. The trap function
uses a Vctl array to index with the trap number and obtain a “vector control”
structure to learn how to handle the trap—more generic programming.

• io.h:44,56

Among other things, the Vctl structure holds the interrupt number, a tbdf

field which identifies the place of the device in the bus hierarchy, and a pointer
for the interrupt handler f. The handler admits an argument and there is a
place for the argument (a) in the Vctl. When an interrupt (or trap) happens,
trap takes the Vctl and calls f(a). That is an easy way to reuse a given f by
supplying different arguments to it.

• trap.c:24,31

A newly allocated Vctl is initialized. The name supplied to intrenable is
stored in v->name. That way, the kernel (and its users) can know who allocated
the interrupt. The interrupt number, handler, and its argument are stored
too. In our case, name would be eia0 or eia1, and the argument for the
handler would be 0 or 1—telling ns16552intrx which one of the two UARTS
is interrupting.

• trap.c:33,34

Locking the Vctl to avoid someone changing the handler under our feet, call
the architecture specific intrenable supplying the Vctl.

main...

intrenable

i8259enable() Enables an interrupt in the PIC.

• i8259.c:131,147

For the “generic” architecture, intrenable is i8259enable. It updates the
i8259mask and installs it on the PICs. The interrupt number is checked to be
valid.

• i8259.c:148,152

Also, if the interrupt is not level-triggered (it is edge-triggered) it is not allowed
to be shared. Shared? Yes, look at the Vctl and see how there is a pointer for a
next handler. On the PC, interrupt numbers are scarce, and devices may share
them. The kernel will call the drivers sharing the interrupts, and they should
cooperate to determine which one was actually responsible for the interrupt.
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• i8259.c:153,157

Here is where the new interrupt mask is programmed, and the interrupt is
enabled. It is now passing through the PICs from the device to the processor.
If the interrupt enable flag is set, the processor may be interrupted now by this
interrupt and trap will call its handler(s) using the Vctl(s).

main

• main.c:152

mathinit enables some traps and interrupts, used by the coprocessor to notify
FPU (Floating point unit) errors.

mathinit()Enables FPU traps/interrupts

• main.c:552,559

Calls to trapenable and intrenable would be setting up Vctl structures to
let trap know that the kernel is prepared to service FPU related events.

• main.c:153

kbdinit (in kbd.c:397) allocates ports for the keyboard, as well as the keyboard
interrupt. After consuming any character from the keyboard (from the impa-
tient user) it enables the keyboard interrupt. The keyboard interrupt handler
translates keyboard generated keycodes into Runes, that are the “characters” of
the Unicode standard (Plan 9 uses unicode instead of ascii, have you Japanese
friends?) i8253enable()Enables the clock interrupt

• main.c:154,155

If a clockenable exists for the current architecture, it is called. For us, it is
i8253enable that enables the clock interrupt using clockintr as a handler.
Clock ticks from the programmable timer are now arriving to the processor.
clockintr will be discussed later; it is the heartbeat of the system.

3.8 Setting up I/O

main

printinit() Initializes console output.

• main.c:144

the call to printinit initialized the queue used for print in the console. What?
the queue? Let’s see that.

• /sys/src/9/port/qio.c:25,49

Time ago, Plan 9 used Streams [15] to do I/O. The data structure found here,
is the distilled replacement for Plan 9 3rd edition. It defines a Queue. A queue
is the structure used to read/write bytes from/to a device or any other kernel
beast. The author uses that because it would not be good to block a process
writing on the console just because it takes a long time to put bytes in the serial
line. It is better to place the characters in a queue and, when the line is ready,
process them and put the bytes through. This is an example, but there are
many similar situations and I hope you get the picture.
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• qio.c:29,30

Queues hold Blocks. A Block is a buffer waiting for I/O. Some part of the
kernel puts a buffer in a queue, and another part is expected to consume the
buffer some time in the future.

• portdat.h:123,135

Block is defined here, and provides pointers (next and list to link up blocks
sitting in a queue). base points to the start of the buffer, and lim determines
the end of the buffer. The other two pointer rp and wp are the read pointer
and the write pointer. Routines writing to the Block advance the write pointer,
and routines reading advance the read pointer. The portion of the buffer still
to be read lies between rp and wp. Note the pointer to a free routine. The
allocator of a Block can supply the buffer from whatever memory allocator it
chooses (maybe just static memory), and set free appropriately so that when
the buffer is no longer used memory is released.

• qio.c:32,35

These values summarize the memory held by the queue (i.e. by the blocks in
the queue).

• qio.c:43,46

These locks are used to queue processes waiting for data to read in the queue,
as well as processes waiting for buffer space in the queue so they could write.

Now let’s see a bit of the implementation.

• qio.c:74,364

Several routines provide the programmatic interface for Blocks. They are all
you need to manipulate and access the buffering provided by the Blocks. They
know that blocks are linked together.

• qio.c:370,403

qget is a routine called by readers of a queue.

• qio.c:375,383

After locking the queue, it sets its state to Qstarve if there is no data to read,
and returns a null block.

• qio.c:384,387

If there is a block to read, it is removed from the queue.

• qio.c:390,396

When the state is Qflow (the writer was stopped because it was writing too
fast), and the queue has less than half its capacity, the writer is awakened (it
will continue and write) and the Qflow flag is removed so that any other write
can proceed.

We saw this to get a flavor of I/O using queues, but we’ll see queues in chapter 5
that discusses files and I/O.



66 CHAPTER 3. STARTING UP

3.9 Preparing to have processes

The kernel has almost booted, and we have gone a long way already. You now know
a bit of the data structures used and how the system glues to the hardware. The
things to come are more interesting and a bit higher-level than what is past.

• ../pc/main.c:156

procinit0 should be called actually procinit, but there is another routine
with the same name.

procinit()Initializes the process table.

• ../port/proc.c:386,400

it creates a process table containing the number of processes initialized previ-
ously in conf. All process table entries are linked into a free process list. Each
entry contains what the system knows about a particular program in execution.

initseg()Initializes allocation for segment (images).

• ../pc/main.c:157

Processes need (program) images to run. initseg initializes the Image alloca-
tor in ../port/segment.c by doing the same other allocators do: Images are
allocated and linked into a free list. You will learn later what is an image.

3.10 Devices

• main.c:158

links is called to initialize devices. However, there is no C source file with a
links function definition. What happens here?

• ../port/portmkfile:45,46

the script mkdevc is called to generate 9pcdisk.c from 9pcdisk or any other
configuration file.

• mkdevc

generates a source file from the configuration file (i.e. the value of the $CONF

variable as given to mk).

What does it generate? Let’s look at both pcdisk and pcdisk.c.

• ../pc/pcdisk.c:9,31

First, external Dev structures are declared for entries under (i.e. indented below)
“dev” in pcdisk. You see, rootdevtab for root, consdevtab for cons, etc.
What is a Dev? By now, think of it as a bunch of procedures (i.e. pointers
to functions) describing how to operate on a device. The interesting thing for
you now is that they have a reset procedure. To pick up one, etherdevtab is
declared in devether.c:431,450, and it contains a reference to etherreset.

• pcdisk.c:32,57

Now, a devtab array with pointers to Dev structures is built by mkdevc, it is
null terminated.
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• pcdisk.c:59,66

For entries in the configuration file named *.root, *code, array declarations
are generated together with a length variable (The actual arrays are not being
declared now). Looks like “.roots” need this to get initialized; but forget this
now.

• pcdisk.c:67,76

This is the interesting thing for us now. For each thing in the conf file under
link, an external thinglink function is declared. That is our initial entry point
for ethernet and communication devices. The convention is that a thing.c file
would contain the thinglink function. By generating this code automatically,
to add a new “linked” device, the author only needs to write a new C source file,
add the entry for the device in the configuration file, and recompile the kernel.
Of course, the scripts won’t work unless the author follows name conventions.

main

links() Links device drivers into other drivers.

• pcdisk.c:77,92

The generated links function, calls the link procedures for the “link” devices
configured into the kernel. What are links? Well, you see how most entries
under links are for ethernet cards; concrete ethernet drivers can be linked
to a generic driver supplying the common functionality. You get the picture.
(Note also how for *.root entries, a call to addrootfile is generated. That is
initializing some kernel-supplied “files” used to get the system working; More
on this later).

ether8003link()Links the WD8003 ethernet driver

• ether8003.c:267,270

For ether8003, you only have to go to file ether8003.c and look at function
ether8003link (saw the name convention?). If calls addethercard supplying
a card name and a pointer to a reset procedure.

addethercard()Links and ethernet ethernet driver

• devether.c:302,311

addethercard is simply registering (linking!) the card into a table with config-
ured cards. Later, the reset procedure of the card will be called to prepare it
for use. We don’t discuss it here, but devether is a generic ethernet device that
uses services of concrete ethernet card drivers. For instance, the kernel uses
devether to start and stop ethernet cards, and devether uses Ether struc-
tures to locate procedures for starting and stopping the concrete ethernet card
involved.

How is the Ether structure being filled up? When later, devether calls the
reset procedure registered by addethercard, it is supplied an Ether structure
that it must fill up. Starting to see how things fit together?

• pcdisk.c:95,98

Just for curiosity, see how the knownarchs array mentioned before is also gener-
ated. For our local configuration, the only specific architecture is that for Intel
based multiprocessors; everything else is a regular PC.
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• main.c:160

now that generic devices have their concrete devices linked into, call chandevreset.

main

chandevreset() Resets device drivers.

• ../port/chan.c:50,56

Forgetting about the “chan” thing, chandevreset iterates through the devtab

generated by mkdevc and calls all reset procedures. That prepares each device
for operation. As one device may depend on another, the configuration file
has (at the right of the line configuring a device) the name of “it-depends-on”
devices. mkdevc must honor dependencies when generating devtab.

etherreset()Resets the ethernet ethernet driver

• ../pc/devether.c:337

Using again our ethernet card as an example, etherreset may look rather
complex for us now, but it just tries to detect (linked) ethernet cards and prepare
them for operation.

• devether.c:361,362

This is where reset for the ethernet card linked before is called. The purpose
of this routine is to try to detect cards, and initialize any interface (i.e. shared
memory between the host and the card, or I/O ports, or whatever) used to talk
to them. If a card is detected, reset should say so with its return value so that
devether knows whether there is yet another ethernet card or not.

• ether8003.c:71,142

Most of the code of reset has to do with playing the dance from the card
manual to determine if the card is there and what kind of card is it.

3.11 Files and Channels

.
First a quick remark, I am still discussing initialization carried out by main. But

since files and channels are so central in Plan 9, let’s say a bit about them before
continuing with the source. You are advised to read intro(2) until the point where
processes are discussed. Manual pages for system calls mentioned below are also
relevant.

In Plan 9, a file is an entity serviced by a server process over the network. That
is a generic definition. Of course, the “server process” can be the kernel, or a user
process, and the “network” may be some kernel code to glue a local, in-kernel, file
server with a local user of the file. Note that “local” here means “within the same
node”.

Files are used with the traditional unix interface: create, open, close, dup, read,
seek, and write. And files are still (as they were in UNIX) a (named) sequence of
bytes. Files are deleted with remove (kind of UNIX’s unlink, but a bit different).
stat and wstat are used to read and write file attributes. Directories are read like
files, but they are written either by using dirwstat to change attributes of a directory
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entry, or by using create or remove (they add and delete directory entries for the file
affected).

This (procedural) definition of what is a file, refers to procedures that can be
applied to files, either to obtain new files or to manipulate and destroy them. However,
when there is a network between the file and the file user (the caller of the procedures),
something has to be done instead of calling the procedure with a procedure call.

What Plan 9 does is to translate calls to file procedures in the client machine to
RPCs to the server. In case you didn’t know, an RPC is a remote procedure call. It
works by sending a message from the client to the server when a procedure is called,
and receiving later another message with the procedure result. The steps are mostly
as follows:

1. The client (the caller of let’s say, write) calls the procedure (write).

2. A piece of code (stub) in the client implements the local procedure actually
called by the client, but that is not the real procedure being called. The client
stub builds a message with the identifier of the procedure being called, and a
copy of the parameters passed to the procedure.

3. The client stub sends the message to the server process (the one implementing
the procedure being called).

4. The server process is a process listening for messages requesting procedure calls.
It receives the message sent by the client.

5. The server process unpacks the message and determines the procedure to be
called. Depending on the procedure being called, the server knows what param-
eters are in the message, and unpacks them.

6. The server process calls the actual procedure (write) with the parameters just
unpacked.

7. The procedure returns, yielding some results.

8. The server process builds a reply message with the procedure result.

9. The server sends the reply message back to the client

10. The client stub receives the reply

11. The client stub unpacks any output parameter and result received, and returns
pretending that it was the stub the procedure that computed the result.

Now, the protocol defining the request (called transaction in Plan 9) and reply
messages to perform operations on Plan 9 files is called 9P. It is defined in section 5
of the manual. It is a protocol, and not a bunch of unrelated RPCs, that means that
both the client and the server using 9P are expected to follow 9P rules. You can take
a look at intro(5) to see what’s going on.

How does the client get in touch with the server to issue 9P requests? 9P does not
specify that—read: 9P permits you to use any way you can imagine to get in touch
with the server. You are expected to get a network connection between the client
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and the server by any other means. Once you have the connection, the client and the
server can talk 9P on it.

For remote files, the connection is likely to be either a TCP or an IL stream (IL
is the Plan 9 transport of choice) over an IP network. For local files, you still have a
“connection” between the client and the server. I’ll now describe this one.

3.11.1 Using local files

The client is your local machine. Consider a process calling a file procedure like write,
it specifies a small integer (a file descriptor) representing the file where to write. File
descriptors are obtained with open as in UNIX.

• /sys/src/9/port/portdat.h:555

The kernel knows which one is the current process, and locates the fgrp field of
its Proc structure. The fgrp points to a File Descriptor Group structure. See
figure 3.5.

Fgrp

...

.read

.write

...

Chan
.type
.dev
.QID

Chan
.type
.dev
.QID

The dev−th
File server of kind type

File
w/ QID

Proc

.fgrp .fgrp
.fgrp

Fgrp
devtab

.type

Process table
(procalloc)

Kernel text segment

lptwrite lptread

Figure 3.5: The user uses file descriptors (indexes into the Fgrp descriptor array) to
specify files; but the kernel uses channels to point to routines knowing how to perform
file operations.

• portdat.h:431,437

The Fgrp contains an array of pointers to Chan. Every Chan represents a file
being used, and every file descriptor is just an index into the array in the Fgrp.
open allocates a new entry in the Fgrp and places a Chan on it. The index for
the entry is given to the user as the descriptor for the file just opened.
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We know what is a file from the point of view of the client (a descriptor), but
where is the server? and where is the file on the server? The answers reside in the
Chan structure, with a bit of help from other structures elsewhere. To answer the
questions, let’s follow a bit of the path that a write system call walks.

syswrite() write system call.

• sysfile.c:444

syswrite is called, with arg holding a file descriptor, a pointer to a buffer, and
a number of bytes.

• sysfile.c:452

fd2chan translates the (integer) file descriptor into a Chan structure, by looking
at the Fgrp for the current process.

• sysfile.c:453,468

Ignore this by now. It is for handling directories and checking errors.

• sysfile.c:469

Here it is! The type field of the Chan structure is used to determine the kind
of device implementing the file (the device can be just “software”, of course).
Now, by indexing with type into devtab, the author gets a reference to the Dev

structure for the device implementing the file.

Say that “file” is a printer, the pointer to a Dev structure found at devtab[type]
would be a pointer to lptdevtab, the Dev declared at ../pc/devlpt.c:209,228.
This is because the type in channels pointing to local printers is simply the index
in devtab for the lptdevtab entry.

Now, still in ../port/sysfile.c:469, the procedure pointed to by write in
devtab[type] is called. If you look at lptdevtab, it is lptwrite the procedure
actually called. lptwrite is given a pointer to the Chan for the file being written.
Besides, note how the offset where to write in the file is taken from the offset

field of the Chan. You can see how a Chan in Plan 9 is a reference to a server
file. You also start to see some implications, like that to share a file offset, the
Chan must be shared, which means that processes sharing the Chan must reside
on the same machine.

syswrite

lptwrite() Writes on a file in a lpt device.

• ../pc/devlpt.c:148

In our example, lptwrite gets called, with the Chan for the file.

• devlpt.c:155

At this point, something interesting happens. The lpt driver (the file server in
this case) takes the qid field from the Chan. The QID identifies the file in the
server. It only has sense within the server. Here, the server is just the local
printer driver, and the driver is checking the QID to see which files should be
written (it services several files).
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The QID is made of two numbers, path and vers. Actually, it is path that
identifies the file. In this case, path holds the value Qdata for the printer data
file. But it could be any of Qdlr, Qpsr, and Qpcr for files with names dlr, psr,
and pcr also serviced by the printer driver. Two files (within the same server)
are the same file if they have the same path value in their QIDs. This means
that a client of the file server can check if two Chans refer to the same file by
checking their paths (assuming the files are within the same server. If a file is
removed and created, it should get a new path.

The vers field of the QID is used to distinguish different versions of the file. It
is useful because someone might be caching a file, or might like to know if the
file has changed since it last got its QID.

Two files are exactly the same file, and thus have the same contents if they
reside on the same server and have the same QID. This is also important for
caching. If a cache has a copy of a file, and the server still has the same QID
for that file, there is no need to refresh the file copy in the cache: it is the same
one!

• devlpt.c:165

Another interesting thing happens. There can be several printers. Which one is
the one used for write? The Chan structure has a dev field that specifies which
particular device is being used. So, type and dev fields together identify a
device in the kernel. The type field of the Chan is used to select the appropriate
implementation for file operations, and the dev field is then used to select the
appropriate device of that kind.

So, what is a file for the client process? A file descriptor that leads to a channel.
Where is the server? The type and dev fields of the channel know. Which one is the
file? The qid field of the channel knows.

An what about remote files? For remote files, (not discussed now), the type field
would select mntdevtab among devtab entries. mntdevtab (devmnt.c:920,939) is
the Dev for the mount driver, a driver that implements device operations by issuing
RPCs to the server process. The mount driver uses the connection to the server
supplied by the the caller of mount(2) to talk 9P with the server implementing the
remote file.

3.11.2 Starting to serve files

Going back to main, the kernel is already servicing some files (see root(3)).

• ../pc/main.c:158

main calls links

• ../pc/pcdisk.c:78,81

which calls addrootfile for cfs, kfs, and ppp.

• main.c:160

main also calls chandevreset, which calls reset for configured devices, includ-
ing a call to rootreset: the reset procedure for rootdevtab.



3.11. FILES AND CHANNELS 73

• ../port/devroot.c:78,90

rootreset is simply calling to addrootdir and addrootfile several times.

So, main makes multiple (indirect) calls to addrootfile and addrootdir. Let’s
discuss them now.

• ../port/devroot.c

This is the “device driver” for the root of the file system. It services a flat
directory implementing the well known “/” directory.

main

...

addrootfile() Adds a new file to the root device file free.

• devroot.c:62,66

addrootfile “creates” a new file in the directory serviced by the root device.
addroot()Adds an entry to the tree.

• devroot.c:46,47

At most Nfiles can be placed in the directory serviced.

• devroot.c:48

This is a admittedly simple file system. When other parts of the kernel create
a file into devroot, they supply file contents as well. Remember buffers named
cfscode, kfscode, etc. declared by mkdevc?

rootdata (devroot.c:19) is an array of pointers to the data of the (at most
Nfiles) files serviced. So, addroot uses the first free entry to plug the file
contents in. There are nroot files, from 0 to nroot-1.

Where do file contents come from? Consider for example the kfscode array.
The mkfile is calling ../port/mkroot using kfs as an argument, which is
calling data2s. data2s takes a binary from the running system where you are
compiling the kernel (kfs, which is a program), and generates an assembly file
(kfs.root.s) with the definition of an array (kfscode). The array contents
are the contents of the file. That file is later assembled and linked into the
system. That is how regular Plan 9 binaries are linked into the kernel to be
used as “root files”. You can imagine that root files are files needed to boot the
system (i.e. to connect to a true file system, etc.) and cannot be loaded from
the disk/network file system (chicken and the egg problem).

• devroot.c:49

That was the contents, and the name, permissions, etc? rootdir is an array
of Dirtab structures, containing attributes for the files serviced. In Plan 9,
attributes reside within directories (well, they can reside at any place the file
server wants to put them at). So, d is the pointer to the directory entry for the
file being “created”.

• devroot.c:50,52

File name, length, and permissions are set in the directory entry for the file.
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• devroot.c:53

Crucial! a QID for the file is invented. For devroot, files are numbered 1 to
Nfiles, so that file i resides at rootdata[i-1] and rootdir[i-1]. Clients
using the directory serviced will obtain QIDs for their files and pass them back
to devroot when requesting a file operation. The server must be able to locate
the file quickly given its QID. An index is a just fine way.

• devroot.c:54,55

In Plan 9, directories are also created with create, as files are. When the CHDIR
bit is set in the permissions given to create, the file server understands that it
must create a directory; not a file. It is the convention in 9P (yes, 9P) that the
path component of QIDs have the CHDIR bit set for directories. So, these two
lines of devroot.c are adjusting the QID of the file to look like a directory in
case the permissions said to create a directory.

• devroot.c:56

The number of created files is incremented. The next time a file is created, it
would be placed in the next entry.

• devroot.c:62,75

Pay now attention to the arguments given to addroot in both addrootfile and
addrootdir. Understood? Well, it’s true, I didn’t say that directories have by
convention 0-length.

• devroot.c:80,90

The calls being made by main to the root driver are simply populating the
root device with empty directories holding nothing. But now that there are
directories, they can be populated!

However, although devroot is prepared to service its files, no one has a “con-
nection” to devroot yet. Well, as devroot is local, I mean that no one has a
Chan with the type set so that devroot will service the file at the other end.

3.11.3 Setting up the environment

Most of the environment for the first user process, and the ones to come is provided
by files. For instance, environment variables, names for the host, the user, etc. are
provided by files serviced from the kernel. Now that you understand a bit of what does
this mean, let’s enumerate some files implementing part of the user’s environment.
If you want a user’s description of what is provided, refer to manual section 3. It
describes devices that service file trees from the kernel, as root does. You should
read intro(3) at least.

Take a quick look at any of them and don’t be worried too much if you don’t
understand what is going on. Some of them (eg. env) are fairly easy to understand
though.

• ../port/devcons.c

implements the console device. It supplies files for console I/O and also for
other diverse tasks like user authentication, time of day, rebooting, etc.
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• ../pc/devarch.c

We saw a bit of it. It supplies files to identify the processor, see allocated irqs
and I/O ports, and files to do I/O from user processes.

• ../port/devenv.c

Provides environment variables. They are serviced from the kernel as files in
Plan 9.

• ../port/devpipe.c

Pipes

• ../port/dev....c and ../pc/dev...c

and many others.

I will comment some kernel drivers through this commentary, as I did with the
root driver.

3.12 Memory pages

After our incursion into the files serviced by the kernel, we are back to main.
You are assumed to have at the very least some concepts on virtual memory from

a basic operating systems or architecture course. You don’t? I think you will survive,
but study that topic a bit. . .

• ../pc/main.c:161

Just initialized the device files, but have more work to do. Now pageinit

initializes page (frame) allocation, to prepare for paging.

main

pageinit() Initializes the page allocator.

• ../port/page.c:13

pageinit has the important task of initializing the palloc page allocator. Right
now the kernel cannot create a process because it can not allocate pages for its
code, data, and stack; not yet.

• portdat.h:444,459

The page allocator holds a Page structure for each available page frame known
by the system. You can image that it is a big data structure—in fact, remember
that when calculating available kernel memory the author had to take into
account the size of this array. By now, see how it looks: looks like the allocator
implements LRU for free pages.

• portdat.h:279,293

The Page structure keeps for each one the physical address in memory, virtual
address for user, and disk address on a file. It also has a virtualized copy of
the modified/referenced bits maintained by the MMU. Page contents come from
either a file or a swap file, image points to that. If you look at Image you see
how it contains Pte structures that keep pointers to Pages. Don’t be worried.
It’s simple: pages are either in use by in-memory images of files or they are free
in the palloc array.
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• page.c:19,20

A big Page array is allocated at once for the number of pages defined in np0

and np1 in palloc. Both np0 and np1 were initialized at xalloc.c:77,78 with
the number of pages “eaten” by xalloc from the two memory banks defined in
the conf structure.

See how the author fights fragmentation? It has no sense to allocate and deal-
locate Page structures as they are needed. There will be at most as many
free pages as free page frames at boot time. The author allocates a big array,
and then links Pages on the appropriate list—Images or palloc as they are
allocated/released.

Lesson: To avoid fragmentation, avoid using dynamic memory when-
ever possible. Allocate many resources at once and then keep on using
them.

• page.c:21,22

More defensive programming. You must have enough memory for the page
array, but maybe you don’t.

• page.c:24,36

One page at a time, bank 0 pages are linked into the free list. p0 is kept pointing
to the physical address where a page is being “moved” to the free list; np0 has
the number of pages in bank0 not in the free list; and freecount has the number
of pages in the free list.

color has to do with caching. Two different pages can have a cache conflict
because both ones collide on a cache sitting between the page and the page user.
For instance, think that even pages use entry 0 in the processor cache, and odd
pages use entry 1. It is better to use pages 3 and 4 than it is to use pages 3 and
5. Got the picture?

The algorithm uses NCOLOR “colors” to “paint” the pages. If a page is ever
allocated for a given user, and that user has color “1”, it is better to give him a
page of color “1”. That is because pages of the same color are far apart in the
memory and the author assumes that the bigger the distance two pages are at,
the less the chance they will collide.

• page.c:37,47

The same is done for pages on bank 1.

• page.c:48,50

The list is set.

• page.c:52

The number of pages for the user is the distance between the head and one past
the tail.

• page.c:52

The size of the physical memory in Kbytes is computed, just for letting the user
know.
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• page.c:53

Remember the nswap “limit” set when the kernel first knew how many pages
would be available? That was actually the maximum number of pages not found
in-memory. By adding the physical memory size, you get the virtual memory
size. This is just to let the user know.

• page.c:57,58

These two values are used for paging. Eg. when less than a 5% of pages are
free, the kernel should be moving pages to disk, to make more room. It is not
healthy to let all the pages be occupied. It could be that (due to some bug) the
kernel needs free memory for the algorithm that gets more free memory. . .

main

swapinit() Initializes the page allocator.

• ../pc/main.c:162

Back to main, swapinit initializes swapping.

• ../port/swap.c:21,33

Set swapimage.notext; which means that there is no swap file yet. Perhaps
an explicit initialization would make things more clear: swapimage has been
initialized to all-zeroes by the loader. Its c member that points to the Chan for
the swap file is still zero, which means that there is no channel to the swap file.
In any case, a “swap map” (swmap) is allocated. It reflects the state of portions
in the swap file. A page array for the max number of pages being paged out to
swap (conf.nswppo) is also allocated.

3.13 The first process

You should know already what a process is, at least from a theoretical perspective
and as a user. To remind you, Plan 9 can use a machine with just one CPU and
pretend that there are multiple programs executing at the same time. The way to do
it is to let each program run a small fraction of time. As the processor is fast enough,
if programs are given small fractions of processor time repeatedly, they would appear
to be executing all at the same time. A program in execution is called a process.

A process is more than a program, it has open files, is run on the name of a user,
has memory for data allocated while the program is running, a stack to keep track of
nested procedure calls and to maintain local variables, etc.

To multiplex the processor among processes, a timer interrupt is typically used.
The system arranges a timer to interrupt the processor, say, 200ms in the future, and
loads the processor context with register values appropriate for executing the user
process code. When the interrupt arrives, the hardware (and the interrupt handling
software) saves the context of the processor as it was right before the interrupt. That
set of registers, if reloaded, would permit the process to continue where it was. But
usually, the kernel loads the context of a different process instead, letting it run for
another quantum of 200ms in this example. At some time in the future, the saved
context for the process in this example would be reloaded and it will not even know
that another process was using the processor before.
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Figure 3.6: The kernel is just a program, and there is just a flow of control. However,
users believe that their processes are executing sequential programs.

In a previous section, you were advised to read intro(2) until the point where
processes are discussed, now go and read all of intro(2) and fork(2). Most of what
the code you are going to read is doing is also described at boot(8). You are also
advised to refresh your “theory” of what a process is in case you are lost by this point.

From now on, I will be describing some important fields of the process data struc-
ture. I suggest you try to guess how they are used. One fine way of doing it is (after
reading the manual pages I suggested) using grep on the source to see where are those
fields used. Try to guess what is the field being used for.

3.13.1 Hand-crafting the first process: The data structures

Right now, Plan 9 is just a flow of control running a program (the kernel) loaded into
memory. That is not enough to provide system services, there should be a real process
that could later use rfork/exec to create new ones and execute other programs.

You can see figure 3.6 to get a glance of how our current flow of control will
evolve into a set of processes. In the figure you see how initially, the kernel started
executing and then it creates the memory image for a first process. It will later jump
to protection ring 3 to execute the user code for it. After that, the kernel would only
execute to service interrupts and system calls—(in the mean time the process would
be ready to run, but would not be running). This first process would make rfork

system calls to create new processes, and the clock interrupt will be used to multiplex
the processor among existing processes.

• ../pc/main.c:163

About to call userinit in main. It is the procedure that creates the first user
process. After that is done, what remains is to jump to that process and let
the system run when interrupts, exceptions, or system calls request any system
service.

main

userinit() Initializes the user environment and creates the first process(es).

• main.c:236

Previously, the kernel allocated an array with Proc entries. That was the process
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table. Each entry is a Proc struct with the information needed to implement
processes. For example, the Proc structure is used to get to the saved processor
context needed to put that process back in the processor. Now the author
allocates a free entry in the process table. That entry will be filled up to
initialize (create) a new process.

main

userinit

newproc() Allocates a process table entry.

• ../port/proc.c:307,314

newproc waits until the free list has at least a free entry. The resrcwait call
would make the current process wait due to the specified reason (“no procs”);
it would be preempted or moved out of the processor. Think that the current
process, willing to create a new one, has to wait until a free entry be available.
By the way, what is the current process? By now, none. However, there are
free entries and we break the loop at line :309. The kernel is creating the first
process and by now there is no current one. Note the use of the loop around
the wait, because there is no guarantee that by the time the current process
gains the lock in line :313 any free entry be still there. Another process could
run instead, gain the lock, and allocate the just released entry.

• proc.c:315

The process entry is removed from the free list. p is the process begin created.

• proc.c:318

This will be clear when we discuss processes in chapter 4. Processes have a
“state”. The process state tells the system on what condition the process is
in. In this case, the process is being handled by the scheduler, the part of the
system that decides who runs next and switches from one process to another.

• portdat.h:493,504

You should recognize at least the typical states Ready and Running. To get an
idea of how state is used, consider that dead processes (those that terminate
or abort) have their state set to Dead; functions doing things to processes
while they are alive can check that the state is Dead and do nothing to dead
processes.

• proc.c:319

This is the state name as printed by ps(1). It is a new process. psstate holds
a representative string for the state the process is in. That can effectively turn
ps(1) into a debugging tool. It also permits you to inspect a process from a
different machine, psstate would make sense even on a different architecture:
It is just a string that is understood everywhere.

• proc.c:320

mach points to the Mach structure of the processor where the process is running.
Did not run yet. It is necessary to know on which processor the process is
running at, because on that processor is where the actual process context is
(while a process is running, the set of registers last saved for him by the hardware
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is irrelevant). The convention is that mach is zero only when the process context
is saved elsewhere and its user code is not running.

• proc.c:321

Not on the free list anymore.

• proc.c:324

This is discussed in the chapter for processes. It is used to make the process
wait due to some reason. Not waiting anything now.

• proc.c:325,328

Some resources used by the process cleared. Let’s say something about it now
before continuing.

Take a coffee, go read rfork(2) (reread intro(2) if you forgot), and come back
later.

• proc.c:325

Processes have a name space. More precisely, processes are within a process
group and process groups have a name space. pgrp is a pointer to a Pgrp

structure representing the “process group”. For me, the initial “p” is confusing
because it sounds like “process” and not “name”, but the author would have
a good reason for the name. The name space determines what names lead to
what files. Actually, the name space is very similar to that of a UNIX machine.
In UNIX, there is a mount table (for the whole system) that specifies paths that
lead to file systems. For instance, “/” leads to the root file system, “/cdrom”
may lead to a file system on a cdrom, etc. Now, back to Plan 9, every process
has a name space. The name space is made of a mount table that associates
paths to file systems. For example, one thing the first process will do is to
associate “/” to the root file system implemented by the root device.

The interesting thing in Plan 9 is that every process (group) has its own name
space and can add and remove entries without affecting other processes. Adding
a new entry is called mounting a file system or binding a file (see mount(2)).
Deleting entries is called unmounting a file system.

This is very important because it provides an engineering solution to sev-
eral important problems on distributed systems. For instance, by binding
/$objtype/bin onto /bin, each process will find appropriate binaries for the
current architecture; binding files under /dev is a fine way to make a particular
process see a different device–perhaps at a different node!

Processes can share their name space (i.e. their process group) too. That means
that several processes may have the same value in their pgrp field.

• proc.c:326

Processes have environment variables. Both variables and values are strings.
An example of an environment variable is PATH (which, by the way, is mostly
unused in Plan 9). Again, each process has its own environment (made of a set
of variables). egrp points to an Environment Group or Egrp structure.
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• portdat.h:413,429

It maintains variable names and value strings. Several processes may share their
environment; egrp may be the same for more than one process.

• proc.c:327

Processes have open files. As we saw before, each process has a file descriptor
group. fgrp points to an Fgrp structure.

• portdat.h:431,437

It has the set of file descriptor entries for the process. You already know that
each file descriptor leads to a Chan structure that is all you need to perform an
operation to the file referenced by the Chan. Again, processes may share their
file descriptor group. Several processes may have the same value for fgrp.

• proc.c:328

Processes can synchronize by using rendezvous(2) . To rendezvous, processes
call rendezvous supplying a tag that must be the same for the two processes
doing the rendezvous. Tags are actually local to a “process rendezvous group”.
rgrp points to a Rgrp structure.

• portdat.h:407,411

This implements the rendezvous group. It is obvious that processes can share
their Rgrp.

• proc.c:329

Sometimes, a process gets broken and has to be debugged. The debugger is
another process that controls the execution of the debugged process by placing
breakpoints, altering the debugged process state, and processing events of in-
terest for debugging. pdbg in a process being debugged points to the debugger
process Proc structure.

• proc.c:330

This has to do with how math coprocessors work. It is really expensive to
save and reload the coprocessor context. Therefore, the system tries to avoid
unnecessary coprocessor context switches by not loading the coprocessor when
a process does not use it. fpstate records the state of the coprocessor. The
author uses it to know if the coprocessor is being used. By now, it was not even
initialized to a reasonable state. FPinit says so.

• proc.c:331

You probably think that all processes execute user programs, running with the
processor in non-privileged mode (ring 3). And that these processes enter the
kernel only to service an interrupt, a trap, or a system call. That is not true.
There are processes that spend their lives within the kernel. These are called
kernel processes. For example, in Plan 9, there is a process called “pager” that
has the important task of doing page outs when low on free page frames, by
stealing page frames from other processes. This is better implemented as a
process with its own (sequential) flow of control that mostly sleeps until a point
when it starts moving pages to disk. You can imagine that to move pages to
disk, the process must do I/O and must have special privileges, since it must
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have access to the pages for the processes involved. For both reasons, it is
implemented as a process that never leaves the kernel, it starts executing a
at a given function within the kernel. After that, it is handled as a regular
process—with special privileges, admittedly. kp is true when the process is a
kernel process.

• proc.c:335

Processes move. They move from one processor to another. This is important
because if a process has just run at a given processor, the processor’s cache will
still have cached memory for the process. It is much cheaper to run this process
again on that processor than it is to run it at a new one: The new processor
will remove from its cache other memory and it will have to move in new entries
for this process; besides, the old processor has now unuseful cached memory.
movetime keeps the earliest allowed next time for a move, to help in taking into
account “processor affinity”: a process has affinity for the processor where it
did run last time.

• proc.c:336

Processes can be wired to a processor, so they always run on it. wired points
to the Mach structure for the processor where the process is wired to.

• proc.c:337

ureg points to a saved Ureg for the process used for notes. Forget this now if
you don’t understand.

• proc.c:338

error maintains the error string for the process (see errstr(2)). Errors are
represented by strings (portable, readable) in Plan 9. They are set either by
errstr or by a failed system call.

• proc.c:339

Processes have a virtual address space. That means that different processes
have different page tables and their virtual to physical address translations
differ. In Plan 9, the user part of the address space (what the user process sees)
is organized as a set of segments. Every process has a TEXT segment with the
code, a DATA segment with its data, and a STACK segment with the stack. There
are other segment kinds like BSS, for uninitialized global data, etc. Some of
them are initialized later for this handcrafted process.

Processes may share segments, although some segments, like stacks, are not
shareable—that would make no sense. The chapter on virtual memory discusses
this. Each process can have up to NSEG segments, and at this line, newproc is
clearing all the pointers to the NSEG segments.

• proc.c:340

Processes have a pid that identifies them. The pid is unique within a node.
incref takes a Ref structure, that contains a counter, and increments it. The
author uses incref and not ++ because some other processor might be creating
a process—well, not now. incref uses locks to avoid races. So, in this line, a
new pid has been allocated. It is “1” because pidalloc was initialized to zero
early during kernel bootstrap.
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• proc.c:341

noteid identifies a “process note group”. Processes may be posted notes, which
are kind of UNIX signals. Notes are strings, though—and may be posted
through the network using proc(3)! The system itself posts notes to processes
when they get an exception, and they can prepare to handle the note as said
in notify(2). You can post a note to a group of processes (a set of processes
with the same noteid), and all processes with that noteid will get the note. A
new note group has been allocated.

• proc.c:342,343

If so many processes have been created that pidalloc or noteidalloc get
wrapped down to zero (by a set of increments), panic.

• proc.c:344,345

If there is no kernel stack for the process (which is the case) a new stack is
allocated. Remember that smalloc keeps on trying until the stack can be
allocated. Right now the kernel is running into a rather borrowed kernel stack.
The current stack belongs to the current processor, not to the current process,
and each process should have its own kernel stack where the hardware will push
the processor context on traps and interrupts, and where kernel procedures will
be called during system calls made by the process.

The author tries not to waste time by keeping the kernel stack for a process that
existed before; its kstack would be non-nil and the one used in the previous life
of its Proc would be reused for the new process.

• proc.c:347

All set. If you take a look to it all, the author has initialized everything to
just nothing—except for the kernel stack, which comes along with the allocated
Proc. The process must now be given some resources to start working.

main

userinit

• ../pc/main.c:237

Back to userinit in main, it starts to give resources to the process. At this
line, create a new namespace pgrp.

newpgrp()Allocate a new process group

• ../port/pgrp.c:43,51

newpgrp simply allocates a Pgrp structure with everything set to null. It also
allocates a new process group id for the just created group and sets ref to 1.

• portdat.h:49,53

Perhaps it’s time to say a bit about Refs. a Ref structure contains a lock and
a counter. It is used to do reference counting—hence the name—although it
seems to be reused to allocate pids, etc. too. A reference counter (Ref) is simply
a counter with an integer value that corresponds to the number of users (i.e.
references) of the data structure the counter is associated with. For example, the
Pgrp just allocated is used only by the process being initialized. Therefore, the
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counter must be one. Whenever a new user of the referenced structure appears
(e.g. a new process starts sharing our Pgrp), the Ref is incremented. When a
user disappears (e.g. a process using the Pgrp ceases to exist) the counter is
decremented. If the counter ever reaches zero, the data structure is no longer
used and can be deallocated. The Lock is necessary because multiple processes
(and processors) could be updating the counter at the same time. You might
say that it would have been better to implement reference counters by atomic
increments and decrements on word-sized values as the Linux kernel and some
others do. However, the Plan 9 approach has two advantages: it is portable and
simple to understand. By not optimizing what does not need to be optimized,
the machine dependent part can be kept small, and the code can be kept more
understandable—ever looked inside of the Linux kernel? give it a try.

Lesson: Do not optimize; ever. Do optimize only when you really
have a performance problem. And be very reticent regarding what is
a performance problem: processors are increasing speed dramatically.

Another reason I did not say is that the “atomic increment” done by Linux is
not so atomic—not a single instruction; at least not in all the cases and for all
the architectures.

• ../pc/main.c:238,239

The Egrp (environment variables) is also allocated—initialized to zero, and its
reference counter set to one. It puzzles me why there is no newegrp routine.
Admittedly newpgrp assigns an id, but it is definitely not more complex than
it would be “newegrp”.

• main.c:240

dupfgrp (which duplicates an Fgrp) is called with a null value to create a new
file descriptor group for the process. Again, maybe a newfgrp routine would
avoid surprises for the reader, although the code is pretty clean and the author
knows the good reason that newfgrp does not exist.

dupfgrp()Create/duplicate a file descriptor group

• ../port/pgrp.c:170,183

First, a new Fgrp is allocated and if no Fgrp to duplicate was given, the Fgrp

is initialized by allocating a chunk of entries. The DELTAFD name suggests that
the fd array is resized on demand to contain DELTAFD extra entries. That is in
fact the case. It is a usual technique employed to avoid fragmentation and save
time to extend arrays dynamically with “delta” new entries every time they run
out of entries—instead of allocating a rather big array or refusing to admit more
entries, or allocating one extra entry at a time.

It returns with a brand new file descriptor group with no open file (no channel
linked into) and DELTAFD ready entries. The reference counter is again 1.

• ../pc/main.c:241

newrgrp creates a new rendezvous group for the process.

newrgrp()Create a redezvous group
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• ../port/pgrp.c:53,61

Again, this just allocates the Rgrp and sets the reference counter to 1.

• ../pc/main.c:242

procmode is set to 640 (octal). Processes are handled by files—like everything
else. devproc implements the driver supplying /proc files, that represent pro-
cesses. This field is simply the permissions for the process, in the file system
view. Using a file for everything is a nice way of fixing how permissions are
checked: in the same way file systems check permissions on real files.

Although processes are files, there is no way to create new processes by using
file system operations. The author considered that it wouldn’t pay the effort,
which is reasonable since processes are created locally, within the same node.
The same happens to several other system calls that cannot be performed using
the file system.

• main.c:244

text contains the name of the file where the process text (code) comes from.
In this case the author uses the string *init* because there is no file.

• main.c:245

Positive discrimination at work. eve is the name of the user who boots the
machine. Well, eve is the name of the array in ../port/auth.c:37 that holds
the name of the user who boots the machine. Conventionally, in Plan 9, that
user is referred to as “eve”. You know, “Adam and Eve”. In Plan 9 there is
no “root” (superuser), but “eve” is given more privileges than other users. The
first process certainly runs on the name of the user who booted the machine,
hence this line.

• main.c:246

Ok, the kernel did that before. But the code is cool, isn’t it?

fpoff()Places the FPU into an “inactive” state

• main.c:247

This executes some instructions to place the coproprocessor in an “inactive”
state. FPOFF is defined at l.s:373,378. By the way, this and the previous line
should be replaced by a call to procsetup (main.c:564,569).

3.13.2 Hand-crafting the first process: The state

main

userinit

• main.c:250,256

Preparing to switch to the first process. sched is a member of Proc of type
Label. A Label is like an oversimplification of a jumpbuf in C. It is buffer
where a copy of a program counter and stack pointer is kept. Labels are used
to implement coroutines. More soon.
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• main.c:255

The program counter registered in sched is the address of the init0 routine.
That function will be the very first thing executed by the process being created
and its purpose is to do some final arrangements before jumping into the user
program for the process.

• main.c:256

The stack pointer saved in sched is the address of the allocated kernel stack
(kstack) plus the size of the allocated stack minus something. On the Intel,
stacks grow downwards; to lower addresses. The address of the allocated stack is
the lowest address in the stack, but the stack pointer for the empty stack would
point to the biggest address of the allocated stack on an Intel. The “minus
something” thing is to reserve some space at the bottom of the stack. What’s
the reservation for?

• ../port/portdat.h:91

MAXSYSARG is the maximum number of arguments for a system call. Here, the
assumption is that each argument occupies at most a word (if it occupies more
a pointer would be used).

• ../pc/main.c:256

The number of words for arguments is multiplied by the number of bytes in a
word, because adding to kstack makes it move counting characters, not words.
By the way, the “-12” in the comment seems to be a relic: 5 words times 4 bytes
per word is 20. I guess at some point there was a kstack-(12+something) and
the 12 was removed and the comment kept obsolete. But who knows.

Taking into account that the reservation is for system call arguments, for me it
looks like the author wanted to ensure that the (theoretically) pushed arguments
for a system call made within the kernel always are valid memory. There is a
check in trap.c:504 that precisely ensures that. For a kernel process, the
arguments would not stand in the “user stack”, but in the kernel stack instead.

What is needed is a kernel stack that has a fake return PC on it so that
gotolabel could overwrite it to “return” to the PC in the label. But I am
not sure more extra room be needed.

• main.c:261

The first segment for the new process! (Not to be confused with a hardware
segment) It is going to be an STACK segment. Must start at USTKTOP (initial top
of user stack) minus USTKSIZE (the size of the stack: it grows downwards!). The
number of pages in the segment must be the number of pages to get USTKSIZE
bytes. Forget a bit about how is the segment created by now. But think that
the Segment structure is created and it contains in the end a bunch of (indirect)
references to Page structures. By now all the pointers to Pages are null. Note
that addresses mentioned here are virtual addresses.

The virtual memory for this process will look like the one depicted in figure 3.7
(in that figure you can see the virtual memory for a second process too, so you
could get the feeling of how this works). Right now the kernel is running on the
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of the virtual address space.

stack near the Mach structure; although it will later run at the kernel stack for
the process being created.

• main.c:262

The stack segment is placed into the seg array for the process. The stack
segment always resides in the SSEG entry.

• main.c:263

Got the segment, but it has no memory. The call to newpage obtains a new
fresh page; later segpage plugs the page into the segment. The page is requested
to be cleared (the “1” for newpage). UTKSTOP-BY2PG is the virtual address for
the page. The “0” for newpage is a pointer to the Segment reference and we
are not (yet) interested what that is for. Ignore how newpage works by now,
but take into account that a page is allocated from the page (frame) allocator,
its reference count gets incremented, its referenced/modified field (modref) is
cleared, and its virtual address (va) is set to the one given to newpage.

• main.c:264

segpage attaches the Page into the segment at the virtual address specified by
the va field in the page. One of the pointers of the Segment points now to the
page. The segment has memory! And the user has an initial stack to issue
procedure calls on it.

One thing to note is that the MMU knows nothing about this page yet. Only
the kernel data structures know that the segment has a page there. The MMU
page table will be updated when the page is first used.
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• main.c:265

The page is “mapped” for the segment, but we are running in kernel now, and
not even within the context of the process holding the segment (i.e. not using
its address space). kmap maps the page for the kernel and returns the address
the kernel should use to access the page.

• dat.h:202

Nice. kmap only has to add KZERO to the physical page address. Remember
that the kernel did set up a one-to-one mapping for physical memory at address
KZERO? That’s why. No need to add temporary entries to the current page
table just to access physical memory. But, why is kmap named “map”? It is
conceptually mapping the page for kernel usage. It doesn’t matter if all the
feasible maps were done before. The use of kmap instead of just ORing KZERO

also allows the author to change his mind and use another implementation in
the future without changing the code that depends on kmap. Interfaces are
important in that they isolate pieces of code.

Lesson: Keep clean interfaces between different components of your
programs. Interfaces allow you to modify one component without
affecting the others.

• main.c:266

VA gives the (user) virtual address for a given kernel address, and bootargs

places arguments for the initial process in the page whose virtual address was
given. By convention, Plan 9 processes receive two arguments for their main
program, the argument count, and the array of arguments. Each argument is
just a string. And by convention, the argument zero is the program name. See
exec(2).

By using arguments and environment variables, users can control what the
executed program will do.

• dat.h:201

Because on PCs, the kernel shares the virtual address space of the process
running, VA simply returns its argument. .

main

userinit

bootargs() Sets up arguments for the first user process.

• main.c:305

bootargs is building arguments for the user process entry point in the user
stack. sp is set to the top of the (empty) user stack. Again, space is reserved
for MAXSYSARG words.

• main.c:307

ac is the argument count. zero by now.

• main.c:308

first argument. av is the argument vector (i.e. like argv) and its first entry
points to the string “/386/9dos” just pushed on the user stack by pusharg.
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The first argument is the program name. In this case, it is customary that the
program be called 9dos, the Plan 9 version for PCs.

pusharg()Pushes an argument in the user stack.

• main.c:286,294

pusharg only advances the stack pointer to make room for the string given,
and copies it there. It returns the new stack pointer (which points to the first
character in the pushed string).

• main.c:309

cp was set to point to the address where the kernel loader placed the bootline.
Ensure that it is null-terminated.

• main.c:310

In buf, the author is going to adjust bootline. The adjusted version will be
pushed as an argument. The 64 in the declaration should probably be replaced
by BOOTLINELEN.

• main.c:311,318

If bootline started with fd, place the canonical full name for that: “local!#f/fd0disk”.
That saves typing for the boot user and keeps the first process happy. The “#f”
is the path to the kernel floppy device. The name is pushed on the user stack
and placed into the argument vector.

• main.c:314,316

The same for hard disks.

• main.c:317,318

If option “n” is given to the first process, it understands we are booting from
the network. Surprisingly, option “n” is missing from the boot(8) manual page
(boot is the first process).

• main.c:319,324

If the argument was a floppy or a hard disk, put the name of the disk into the
conf structure as if the user said bootdisk=... in plan9.ini.

• main.c:328

The stack pointer points to words, but pusharg puts characters in the stack.
This is ensuring that dummy bytes are pushed on the stack in case that is
needed to complete a word. But all the arguments are now pushed.

• main.c:331

Make room in the stack to put the argument vector—with pointers to the ar-
guments just pushed. The +1 is because it has to be null-terminated (did you
read exec(2)?).

• main.c:332,335

lsp is the argument vector passed to the user program. It is built by pushing in
the stack each of the recorded arguments in av and null-terminating it. av[i]

was the kernel virtual address for the pushed argument. The added expression
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is to “move” that address into the one seen by the process. It is a translation.
The length of the translation is the difference between what the user code thinks
is the start of the page allocated for the stack, and what the kernel thinks is
the start of that page. This addition is necessary: remember that the kernel is
using a virtual address that depends on the KZERO mapping for the stack (e.g.
bigger than KZERO), but the user will use its own user virtual address for the
stack (e.g. lower than KZERO). The KZERO map has no permissions to be used
by code running at ring 3. Otherwise, a user program would be able to access
all physical memory installed.

Perhaps the usage of a “kernel-virtual-to-user-virtual” or “kv2uv” macro would
make this more evident.

• main.c:336

The same adjustment has to be done to the stack pointer itself. Beware, I
did not tell, but sp is a global variable pointing to the user stack for the boot
process. That is why it is adjusted and the routine just returns. It is probably
a global because init0 is the one using sp to jump into the user code. Because
we are going to loose our stack when jumping to init0 later, the author cannot
easily pass the argument using the kernel stack of the new process. The sizeof

ulong adjustment is for the argument count. By the way, what happened to the
argument count? Does boot not use it and nobody noticed? Or are we missing
something?

main

userinit

• main.c:267

The user stack is all set. So release the kernel map for the stack page; i.e. do
nothing.

• main.c:272

A segment of type TEXT is created for the process. It starts at UTZERO (the zero
address within the text segment). Just one page suffices (that’s 4K).

• main.c:273

flushme has to do with caching. Forget it.

• main.c:274,277

The segment is placed in the list of segments for the process (slot TSEG for the
text segment). A page allocated at address UTZERO and linked into the segment
as before. Ignore the memset; it is honoring flushme.

• main.c:278,280

The text segment for the process is initialized with the contents of initcode.
That is the program run by this process. If you look into ../pc/initcode you’ll
see that it simply execs boot.

Hint: You run new programs in new processes by doing a fork and then an
exec. By hand-crafting the first user process, the system is doing the fork (It
cannot use fork because there is no process to fork). The best way to avoid



3.13. THE FIRST PROCESS 91

hand-crafting an exec is to use a silly user program that calls the regular exec
system call. You’re done, and you can start as the first process any program
you want!

• main.c:282

ready changes the process state to Ready (ready to execute) and links the Proc

into the scheduler ready queue—the queue of processes ready to run. More on
that later.

3.13.3 Starting the process

• main.c:164

userinit is done, and schedinit starts up the scheduler now that there is a
process to schedule. schedinit never returns, so main is really done.

main

schedinit() Initialize and start scheduling.

• ../port/proc.c:57

m points to the Mach structure for the current processor. In ../pc/dat.h:160

you can see how it contains a Label (you know, PC and SP buffer). setlabel()Record

PC and SP.

• ../pc/l.s:497,498

setlabel receives a pointer to a Label. It first loads ax with the pointer to the
label passed. FP is the “frame pointer” that points to the activation record for
setlabel in the stack.

• l.s:499

the current stack pointer is copied into label[0] (considering label as an array
of integers now).

• l.s:500,501

The stack has the typical layout for a function call. The function right now is
setlabel. The top of the stack contains the “return pc”, i.e. the address where
to continue executing upon return from setlabel. That address is stored in BX,
and then BX is placed into frame[1] (considering label as an array of integers
now, assembly uses offset 4 because an integer has 4 bytes). The return PC
points to the instruction in schedinit right after the call to setlabel.

So, m->sched has the PC and SP corresponding to the point of execution right
after setlabel was called.

• ../port/proc.c:58

up is a pointer to the current user process. Right now, it has a null value. So,
why does schedinit check for up? You will know in the next chapter; You are
not expected to, but can you guess why?

It is obvious that up cannot be a global variable, because, how could then differ-
ent processors have different user processes? up is defined at ../pc/dat.h:263
to be the externup field of the Mach structure for the current processor. For
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each processor, that field points to its current process. On uniprocessors, a
global up would suffice.

• proc.c:83

The scheduler is called. sched picks up a process and switches to it. Right now
there is only a first (boot) process.

main

schedinit

sched() Schedule a process.

• proc.c:93

If up is not null, there is a current process and the routine must save its state;
otherwise the kernel won’t be able to come back to the process when it be
allowed to run again. But there is no current process yet; forget this now.

• proc.c:107

runproc chooses among the set of ready processes one to be run. up is set to
point to it. Until the next time sched runs it will be the current process (for
this processor).

main...

sched

runproc() Elect a process to run.

• proc.c:201

Interrupts allowed. From now on, the timer, and any device can request our at-
tention. Interrupts will be serviced using the kernel stack of the boot processor,
by now.

• proc.c:202,203

idlehands does whatever the kernel should be doing while there is nothing to
run on the processor. It is defined as “do nothing” at ../pc/fns.h:43. So,
whenever no process is ready to execute the kernel would be looping here doing
nothing until an interrupt (or another processor) changes things.

• proc.c:204,243

The loop keeps on looping until a process is found for running. Whenever it
gets that process, it jumps to the found label, where the fortunate process will
be put on the processor. The only thing to notice right now is that there is an
initial process and the jump to found is done. Although it is also interesting
that the loops leaves rq pointing to the run queue where the selected process
resides. There are several run queues as we will see in the next chapter.

• proc.c:246

Interrupts cleared: The routine is messing up with the queue of ready processes,
if an interrupt arrived and could change things, the kernel could crash.

• proc.c:247,248

What if another processor is also picking up a process to run? The routine
should wait until that processor be done with the scheduler queue. So, if it
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cannot gain the lock of the run queue, it goes back to the loop. Interrupts
were disabled before locking the queue, but that affects just to the processor
running this code, other processors are free-running. The goto will again enable
interrupts and reenter the idle loop that searches for ready processes. The
routine will again detect that a process can be run, and try to lock again the
scheduler queue (the process that it found before the goto loop might still be
there if not picked up by another processor).

This is busy waiting (i.e. no semaphores), but since the routine cannot even
know who should run, what else can it do? You might say that the author could
let the old current process run a bit more time, but it could be that 1) there
is no such process or 2) such process is now blocked waiting for something to
happen.

This is not the case now. There is one process (boot) for us to run.

• proc.c:250,255

Got the lock, now search for a process p that runs at this processor (affinity!).
head is the head of the processor ready queue and the rnext field of Proc is
used to link processes into this queue. The loop selects any process p that either

1. did run in the processor running runproc, for affinity. The routine can
know that because the mp field of Proc has the number of the field machno

in the Mach structure where it did run last.

2. did not move recently (to avoid trashing, i.e. moving a process repeatedly
between several processors). The code knows that p did not move recently
because in movetime p has the earliest time when it is allowed to move;
more below.

l points to the Proc right before p in the run queue.

For us, p points to the “*init*” process just created by main.

• proc.c:260,263

If the run queue is empty, go back to the loop. It could be empty because all
processes can be blocked (not the case). It also goes back to the loop when the
process is running on a different processor (the process state is at the processor,
and not saved within the kernel; see the comment to learn how to know that).

• proc.c:264,271

Note how easily the process is removed from the run queue. It is no longer
ready, it is going to be running. The counters for the number of processes in
the run queue and the number of ready processes are updated.

• proc.c:272,273

This should not happen. The kernel (as any program) tries not to flood the
user with messages. Whenever something important has to be said, it does
so; otherwise it remains silent, because, who cares? Guess why this shouldn’t
happen?

• proc.c:274

Done with the run queue, let other processors use it.
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• proc.c:276

The process is being handled by the scheduler. Perhaps this could be moved
right before line :274, to make sure that if by any bug, the process gets linked
back to a run queue, everybody will see that it is scheding and report the bug
in line :273.

• proc.c:277,279

Must honor conventions. mp must have the number of the Mach (processor)
where the process last run on. mach, the pointer to the structure is a different
thing and may be null. Also, movetime is set to the current time at the boot
processor plus 1/10 of second. HZ has the number of ticks per second and ticks

gets incremented every tick. The author uses the time at processor 0, to make
all processors agree on the current time on an MP machine (every processor has
its own vision of time depending on the exact point when it was initialized).

So, p is removed from the ready queue and attached to the processor where it
is going to run (it is not going to be ready, it is running).

main

schedinit

sched() Schedule a process.

• proc.c:107

Back in sched, the pointer to the current process is setup as I said before.

• proc.c:108,109

Update the state and set the mach pointer. Its state is going to be in the
processor. Also, the proc field of m is updated. You can go from Mach to the
current Proc and vice-versa.

• proc.c:111

mmuswitch changes the address space to that of the new process.

mmuswitch()Switches the MMU to another page table.

• ../pc/mmu.c:126

This is the only line executed now, it is not really switching the “Intel task”. It
will load the page table given: the page table for the processor. If the process
has its own page table (lines above) that one is used instead; not the case! The
kernel stack for this process—used by interrupts and traps that occur while
running at user level—will be setup to the top of the currently empty kernel
stack of the process. kstack points to the memory allocated for the stack but
that is not the top of the empty stack.

taskswitch()Switches the Intel idea of the current task.

• mmu.c:27,40

It is updating the TSS used by this processor to ensure that the kernel stack
pointer will be set at stack, within the address space determined by the page
table pointed to by pdb. Besides, it loads the new page table pointer into the
MMU. The kernel has just switched to the address space of the just created
process, but it is still running using our boot processor stack. Don’t worry, the
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kernel is mapped the same way at all page tables used for Plan 9 processes, so
our (kernel) virtual addresses keep on pointing to the same place in memory.
The chapter on virtual memory will make this more clear.

• ../port/proc.c:112

Our mind is going. Remember that sched was setup to have the PC for init0
and the SP pointing to the end of init0’s parameters pushed manually by main.

gotolabel()Jumps to a saved context

• ../pc/l.s:489,490

gotolabel resets the stack and program counter with those of label. It now
fetches the pointer to the label into a AX. We consider label as an array of int,
although it is not.

• l.s:491

The stack pointer is set to that in label[0], the old boot processor stack is
gone. At this point the processor starts using the kernel stack for the new
process.

• l.s:492,493

The trick!, when gotolabel returns, the machine jumps to the return PC (the-
oretically) pushed last on the stack by a call instruction. By pushing the PC

saved in label[1] (i.e. the start of init0 code), the ret at line :495 “returns”
to the PC in the label.

• l.s:494

The convention is that functions returning an int use register ax to pass the
value back to the caller. Usually, the 1 just returned will appear to be the
return value of setlabel, but that is explained in the next chapter.

init0() (Kernel) entry point for the first process.

• main.c:190

We are running at the address space of *init*, using its kernel stack, and
starting at the first instruction of init0. Now we are a regular process executing
within the kernel. Not just the flow of control taken after the machine was reset.

• main.c:197

Interrupts were disabled during the context switch, but now the kernel can
handle them again.

• main.c:199,206

The comment states that chandevinit will not call any rootinit—there is
none. Remember chandevreset? The same thing again. The comment re-
garding early kernel processes means this: you do not have root and current
directories for this process, and although you want to setup such things for the
user code about to run, it is good to setup them now so that kernel processes
started before jumping to user code could at least have silly root and dot di-
rectories, provided by the root device. I don’t know why there is no rootinit

function with this code in, the author knows.
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• main.c:203

slash is a pointer to a Chan structure for the root directory. It is set to point
to a channel given by namec (“name channel”), which corresponds to a file with
the given name in the current name space. What? I said namespace and there
is no root yet? Yes. Plan 9 have absolute paths, relative paths, and paths
for kernel device files. “#/” refers to the root of the file tree serviced by the
root device. Devices service file systems named by “#character”. “/” is the
character for the root device. The reason to have device paths is that no matter
how many adjustments a process makes in its name space, it still has access to
kernel devices and can access system provided files—this is not the whole truth.

So now slash points to the directory serviced by root—which is the root of
root’s file tree. You will see how this happens in the chapter devoted to files.
But you already got a glance about it when we discussed channels and root.
Try to read the code anyway.

• main.c:204,205

cnameclose simply removes the given name—not the whole truth. Right now,
it is “#/”, and that’s a funny name for our /. So the author creates a new name
for the channel. What? channels have names? Yes they do. Think that they
are caching the file name.

• main.c:206

cclone clones (dups) a channel. Now dot “points” to the file where slash

points.

• main.c:208

chandevinit calls the init routine for every Dev configured in devtab. We
are now a regular process, have a regular (reasonably sized) kernel stack, are
handling interrupts once in a while, and devices can be initialized. I are not
going to describe how the various init functions work. Only when they be
relevant for the topic of one of the given chapters I’ll do so.

• main.c:210,223

Various environment variables are set up for the current process. The lines
for setting the terminal environment variable are generating a suitable value
from the current architecture name. The kind of cpu is set to 386, you know
that, right?. This is very important, because $cputype is used among other
things to choose what binaries are appropriate for this architecture (saw /386

on your Plan 9 box?). The environment variable service is also important,
because boot uses it to choose the rc script used to start system services. On
terminals you want rio, on cpu servers you probably don’t. For configuration
(ini) parameters with names not starting with *, the author sets environment
variables to reflect their settings. This is very important, because if the boot

initial program is ever updated to take into account some peculiarity of the
Plan 9 installation, an environment variable can be used to indicate that; just
by adding a line to the plan9.ini file.

Ignore the waserror and the poperror. They are described in the next chapter.



3.13. THE FIRST PROCESS 97

• main.c:224

A kernel process is created named “alarm”. It will start executing at the kernel
function alarmkproc. That function iterates through the list of alarms searching
for expired alarms. Then it posts “alarm” notes to the processes with expired
alarms and sleeps until the next alarm expires. This is really good because it
turns alarm handling into a sequential activity: not all processes must be setting
up timers for pending alarms while in the kernel. But we are not interested on
that now.

• main.c:225

touser transfers control to the user program within the given process context.
The global variable sp is used to tell touser what should be the current user
stack pointer. This was initialized before by bootargs.

init0()

touser() Perform an upcall from the kernel to the user code.

• plan9l.s:12,25

The trick is to pretend that we return from an interrupt suffered while running
the user program. The processor is silly and obeys, reloading the processor
context with that of the “previously” running user program.

• plan9l.s:13,19

All these pushes are building the fake stack frame after the (not-existent) in-
terrupt: User PC, user code segment, user flags, user stack pointer, user stack
segment. The code and stack segments are the UDSEL and UESEL, which are the
appropriate selectors for UDSEG and UESEG.

• plan9l.s:16,17

A fake flags word with just the interrupt enable bit set is pushed on the stack
(as if it was a real flags pushed during the interrupt that saved the frame being
built). After the iret, we are sure that interrupts will be enabled. It would
be a disaster if that was not the case, because no timer could ever preempt the
process.

• mem.h:75,76

Users run at ring 3, with non-privileged mode. Interrupts and traps lead to a
switch back to kernel mode as dictated by the IDT entries.

• plan9l.s:20,24

The user data segment descriptor is copied into the descriptors for all other
user’s extra segments. These are not loaded by the iret, so they are updated
by hand.

• plan9l.s:25

Up to userland. After this instruction, the program in initcode is running at
user-level, with the kernel fully initialized below to handle traps and interrupts.

• initcode:14

When the program reaches this point, a trap is raised with number 0x64, and
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the exec system call to execute the program in /boot is issued, with arguments
for /boot taken verbatim as given to us. Remaining initialization is up to boot!

Now, go read again boot(8) and take a look at what it does. That is so clearly
stated there that I’d rather interfere your learning by repeating it here.

One final consideration. Most of the work done by userinit in main would be
portable and could be said to belong to the port directory. However, some machine
dependent assumptions (e.g. the growing direction of stacks) are being made. The
code is more simple having a single userinit than it would be having a machine
independent userinit and then a machine dependent userinit with the code that
cannot be made portable. Portability refers to the difficulty of porting the code to
a new system, not to the number of lines of the pc directory. If the pc directory
holds more files, but is easier to understand, and easier to rewrite/adapt for a new
architecture; that’s fine!

So you now know how the kernel boots, you have an operational system and
everything else is done by issuing system calls to the kernel. In the following chapters
we will read the code related to servicing system calls for the major components in
the system.



Chapter 4

Processes

On this chapter, we will read the code related to processes. As I will do with following
chapters too, I try to follow the execution path for system calls related to the chapter
topic; but I make exceptions to this discussion order whenever I feel its necessary.

Although I am not discussing source code files, one file at a time, I suggest you
still try to read files as they appear. The worst thing that can happen is that you
don’t understand the code and come back to the commentary; but another thing that
can happen is that you understand most of it or it all on your own! That would be a
big progress! During this chapter, you will be reading these files:

• Files at /sys/src/9/port:

portdat.h

Portable data structures.

portfns.h

Portable functions.

proc.c

Processes.

pgrp.c

Process groups.

devcons.c

Console device.

devproc.c

Process device.

alarm.c

Alarm handling.

tod.c

Time of day.

taslock.c

Test and set locks.

qlock.c

Queuing locks.

99
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sysproc.c

Process system calls.

• Files at /sys/src/9/pc:

trap.c

Trap handling procedures.

dat.h

Machine dependent data structures.

fns.h

Machine dependent functions.

clock.c

Clock handling.

main.c

Machine dependent process handling.

l.s

coroutines, locking and other low-level routines.

. . . and several other ones used as examples.

4.1 Trap handling continued

Before looking at how processes work, let’s revisit trap handling once more. I will
be using the clock interrupt as an example of the trap source. The clock interrupt
is important because it is the mechanism used to multiplex the processor among
processes. In what follows, assume that a user process was running while a clock
interrupt happen.

trap() C entry point for traps.

• /sys/src/9/pc/trap.c:218

l.s dispatches the interrupt to the trap procedure, supplying a pointer to the
Ureg structure.

• trap.c:225

intrts is set to the result of fastticks. This Mach field records the time stamp
for the interrupt. That is necessary for devintrts that handles interrupt time
stamps.

• devarch.c:597,601

The time stamp is the result of the architecture specific fastclock routine,
which is defined to be cycletimer

• devarch.c:586,595

that returns the time stamp counter of the processor. (In case you don’t know,
Intel processors from the Pentium up have a tsc register which is incremented
by the hardware at every clock tick).
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strayintr
strayintrx

Vctl Vctl

PICs

16 PIC
interrupts

int N

vectortable

syscallintr

trap syscall

exception!

interrupt!

int N executed!

Processor

idtr
IDT

32 processor
exceptions

vctl

handler handler

systab

syswhatever

Figure 4.1: External interrupts (from the PICs) are dispatched by IDT entries at
VectorPIC; processor exceptions (caused by a faulting instruction) are dispatched by
the first 32 IDT entries; other exceptions can be “called” by int instructions. In the
end, either trap or syscall service them.

• trap.c:226,230

user is set to true if the interrupt (or trap) happened while running user code.
It was so, if the saved code segment within the Ureg is the user code segment.

• trap.c:232

The trap number is kept in vno (vector number). It is going to be used heavily
and caching it in a variable will both enhance the readability of the code and
make it run faster.

What can be the value of vno?

• trap.c:175,208

excname contains names for the first 32 trap numbers, which are generated by
the processor. If vno is less than 32, it must be an exception generated by the
processor. See figure 4.1 if you got lost.

Otherwise, vno is either within VectorPIC (32!) and VectorPIC+16, or it is
above VectorPIC+16. In the first case, the event corresponds to an external
interrupt routed through the PIC; in the second case, it must be a “software
generated interrupt” (i.e. int n).

• trap.c:233
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Back to the trap routine, ctl is the vector control structure for this trap. If
there was no Vctl, we are in trouble: only traps and interrupts that the kernel is
prepared to service had their Vctl set up by either intrenable or trapenable.
Ah, and beware of the assignment!

• trap.c:234,266

The kernel is handling a trap or interrupt that someone enabled before. Things
go well. . .

• trap.c:234,238

Only for interrupts, increment the number of interrupts recorded in the Mach

structure. And if the trap number is a “real interrupt” (not a processor excep-
tion, and not a system call), take the interrupt number from the Vctl. lastintr
holds the value of the last interrupt. That is used for debugging. Perhaps a
local variable would suffice at the expense of reporting unwanted interrupts only
when they happen—see below.

The check against VectorSYSCALL seems to be unnecessary, since the trap for
system calls is routed through plan9l.s to enter syscall (below in trap.c)
directly.

• trap.c:240,241

isr is the interrupt service routine. If the Vctl has one, call it with the trap
number. But, what is an ISR?

• i8259.c:159,162

Our PIC is the i8259. When we did enable it, the i8259elcr (edge/level control
register) had one bit set per edge triggered interrupt. The i8259isr interrupt
service procedure was set as the service procedure for level triggered interrupts,
and it was set as the end of interrupt procedure for edge triggered interrupts.
Note how fields eoi and isr are used to turn Vctl into a programmable inter-
rupt handler.

i8259isr()Interrupt service routine for the 8259.

• i8259.c:105,128

All i8259isr does, is to tell the i8259 that the interrupt has been serviced by
acknowledging the interrupt. The chip now knows that, and forgets about the
interrupt until it is raised again. If the interrupt is not acknowledged, the i8259
would ignore that interrupt when raised again, because it would assume that
the processor is still handling the previous one and is not prepared for servicing
it again. The real interrupt number is not the one coming in vno. vno was set
to VectorPIC+number because PIC serviced interrupts start at VectorPIC in
the IDT. By adjusting the number, irq contains the interrupt number that the
i8259 knows about: from 0 to 15.

• trap.c:242,245

Here is where the functions registered as interrupt handlers (or trap handlers)
are called. For the clock interrupt, the handler will be clockintr, as said in
i8253.c:130 by i8253enable. Let’s defer a bit what clockintr does, but
note how this is the point where the trap (or interrupt) is actually serviced.
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Vctls for the same trap are linked through the next field—there can be several
handlers for the same interrupt. The check in line :243 shows that a vector
number can be enabled (the kernel knows it is ok to get that trap) even when
there is nothing to do to handle it.

• trap.c:246,247

You now know what this does. When necessary, it calls the “end of interrupt”
routine.

• trap.c:250,265

The author preempts processes here. This is discussed in the next section.

• trap.c:267,271

There is no vctl for the trap number: no part of the kernel requested to handle
it. Besides, the trap number has a name in excname, and the trap comes from
the user program. The user did something weird and got a trap generated by
the processor. After indexing with the number to get a name for the trap, a
note for the trap is posted to the process. The process is likely to die. Interrupts
(disabled since the trap) are enabled before posting the note.

You can get into these lines when any of the bad things named in the excname

array happen to the process.

• trap.c:272,294

Not a “handled” interrupt, and not a processor exception while running user
code. The condition checks that vno corresponds to an interrupt and not to a
processor exception. Again, is the check for VectorSYSCALL necessary?

In this case, the number of spurious interrupts for the processor is incremented
and trap returns doing nothing more. A message is printed because this
shouldn’t happen. Now that we bothered the user, the for loop also reports
other unwanted interrupts at different processors. If you read the comment, you
see that the author is suspicious of IRQ 7. Most PCs keep on delivering that
interrupt under certain circumstances even if you are not allowing interrupts.

• trap.c:295,308

Really into trouble. It must be a processor exception while running kernel code.
So the kernel has a serious bug. The dumpregs call prints processor registers
to aid in debugging the kernel, and then the kernel calls panic. Only the boot
processor (machno zero) panics, other processors sit in a loop until the panic at
the boot processor causes the system to go down.

• trap.c:310,313

If something was posted for the process, honor it. More on that when we read
note-handling code. When trap returns, l.s will reload the processor context
from the Ureg and it will resume the activity previous to the trap.

panic()Issue a message and halt.

• ../port/devcons.c:183,204

Just to satisfy your curiousity, panic prints the given message (dumps the stack
to aid in debugging the kernel) and halts the system by calling exit.
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exit()Stop system operation.

• ../pc/main.c:606,630

exit prints the “exiting” message once for each processor (note the use of the
active.machs bit field. Then it waits for a while to let the console print the
panic and exiting message (important if going through the serial line). Finally, if
running at the boot processor on a terminal, it loops forever. For CPU servers,
seems like a reboot (reset) is preferred to restart CPU server operation—after
giving some time to let a human read the message. The exiting field of active
is set to true.

As each processor exits, its bit in active.matchs is cleared, and other processors
will exit too because they notice the active.exiting bit (see
../pc/clock.c:53,54). This is shown later.

4.2 System calls

Some system services (eg. clock handling) are requested by interrupts; some others
are requested by explicit system calls. Let’s complete now the discussion of system
call handling.

• /sys/src/libc/9syscall/mkfile:51,61

This script generates for all system calls listed in sys.h, a procedure that puts
the system call number into AX, issues an int instruction, and returns. These
procedures are called to issue system calls from user code, and are linked along
with every user program. Although there are many system calls, all of them use
the same trap number, and it is the parameter in ax that determines which one
is being requested.

syscall() C entry point for the system call trap.

• ../pc/trap.c:471

System calls get routed to syscall in trap.c by plan9l.s.

• trap.c:477,478

If a system call was issued from the kernel something is wrong. The saved Ureg

CS selector is used to check if the system was running at ring 3 while the system
call was issued.

• trap.c:480,481

Accounting for number of system calls services, and noting that the process is
servicing a system call.

• trap.c:483

registers for the user program are those saved in the Ureg. The name is dbgreg
because this is very useful for debuggers, to fix up a faulting program and let
it continue. The last known PC for the process is that saved in the Ureg;
remember that in the Proc.
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• trap.c:485

This line recovers the system call number from the ax register from the saved
user context.

• trap.c:487,490

Coprocessor stuff. If doing a fork (to create a new process) and the coprocessor
was used, save its state in the fpsave for the current process. The new FPU
state is inactive. By doing this, the author ensures that both the parent and the
child process start with an PFinactive coprocessor state. The child may not use
the floating point unit, ever; in that case, its FPU would be kept FPinactive.

• trap.c:491

System call servicing may take some time; enable interrupts. All the information
needed now is kept in up (and ureg). If an interrupt arrives, the current (kernel)
stack will be used to service it and the current processing will continue after
returning from that interrupt.

• trap.c:497,502

(Ignore the error handling; just assume that line :497 is entered). If the number
is not that of an existing system call (between 0 and nsyscall-1), post a note
for the process and report the error. As you will see, error would cause the
routine to continue at line :513 in this case.

• trap.c:504,505

When the stack pointer for the user code (sp) is not in the first page mapped
for the stack, or is so near the top of an empty stack that it seems to be no
space for the system call arguments, check that the addresses going from sp to
the end of the system call arguments are indeed okay. The first stack page is
known to be okay because the kernel mapped it when the process was brought
to life; but we cannot be sure otherwise that the user stack pointer looks fine
and points into existing stack space. The kernel checks before accessing the user
stack.

Lesson: Don’t trust your users! If you implement any kind of service,
assume that users would be as malicious as you can image. Usually,
they will not be malicious, but they will have bugs that could make
them behave as if they were really malicious.

• trap.c:507

s in the Proc structure is set with the arguments for the current system call. s
is of type Sargs, which holds as many words as MAXSYSARG says—i.e. as many
arguments as a system call may take. The word in the top of the user stack is
ignored; that would be the return PC for the “system call” assembler routine
called by the user code.

• trap.c:508

The string with the “ps” state of the process is updated to contain the system
call name.
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• trap.c:510

And the system call is called. Note how the Sargs is supplied. Arguments
reside within kernel memory and can be used at will, without checking that the
stack addresses are still valid. While the system call is executing, the kernel
could switch to a different process.

• trap.c:530,538

The result of the system call is placed into AX (will be returned by the assembler
user-level stub); and any note posted (will be discussed later) is handled.

4.3 Error handling

Errors are handled by several routines within the kernel. Error handling also in-
cludes routines used to report errors, be they fatal or not. See pages perror(2) and
errstr(2).

4.3.1 Exceptions in C

Errors are handled using error, waserror, nexterror, and poperror. Handled with
care, these routines provide a clean and fast error handling mechanism similar to
exceptions in other languages.

• ../port/portdat.h:593,595

Each process has an array of up to NERR Labels for error handling together
with the number of entries in the array (nerrlab). There is also a place to put
an error message of up to ERRLEN characters.

To see how this is used, let’s see what syscall does for error handling. In
figure 4.2 you can see the whole picture. Initially, the user calls a library function
to perform a system call, and it traps into the kernel (figure 4.2(a)).

• ../pc/trap.c:495,496

The return value for the system call is set to -1, which means failure. waserror
is called inside a conditional. If it returns false, the system call will be called
and return value set accordingly; otherwise, syscall would return the error
condition.

waserror()Prepares for errors setting up an error label.

• fns.h:123

waserror increments the number of error labels for the process (initially zero)
and fills up another label in errlab (initially the first error label).

• trap.c:496

Go back to this line. When syscallwas called and it called waserror, setlabel
in fns.h:123 returns zero. The expression (a,b) returns the value of b; there-
fore waserror returns zero, which means that the then-arm of the if is taken.

During the system call the first error label is set and keeps the SP and PC for
the kernel as they were in trap.c:496 during the early system call steps (see
figure 4.2(b)).
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poperror()Removes an error label.

• trap.c:511

The system call completed, and poperror is called.

• ../port/portfns.h:199

poperror simply decrements the number of error labels: it removes the label
added by waserror in trap.c:496. The state is like that of figure 4.2(a) (of
course, the PC and SP would be that for trap.c:511), and not the ones as of
line :496.

Now, imagine the system call number is wrong.

• ../pc/trap.c:501

error is called with Ebadarg to report the error. error()Raises an error.

• ../port/proc.c:1132,1138

error copies the given string into the error string for the process. (yes!,
Ebadarg is a string with a descriptive text for the error: portable, human read-
able, simple). Once the error reason is noted, nexterror is called. nexterror()Re-

raise an error.

• proc.c:1140,1144

nexterror is where things start to move. A gotolabel jumps to the kernel
state as recorded in the last saved error label; and the number of error labels is
decremented to ‘pop’ it off the array. In our example, the error label was set by
syscall and both the PC and SP would be set as they were when waserror

was called.

• ../pc/trap.c:496

this time, waserror returns true, because after gotolabel, the corresponding
setlabel appears to return true. Therefore, the conditional is not taken. In
effect, nexterror is “raising an exception”, so that the flow of control resumes
where it was at the last waserror. Stack (local, or automatic) variables are
deallocated and function calls made since the waserror are gone without re-
turning. Can you see how the combination of waserror and error forgets
about an ongoing computation and resumes in the top-level routine where an
appropriate action can be taken?

In the figure 4.2, you can see how this works. To make it more clear, the figure
corresponds to a situation where a system call is called (4.2(a)), waserror in
syscall sets the error label (4.2(b)), another kernel procedure (syssleep) is
called (4.2(c)), and this procedure calls error to raise an error (4.2(d)). Noticed
how it works?

Things are more interesting because waserror/(next)error pairs can be nested.
For example, the system call called in the previous example could call waserror again,
and a routine called by the system call could call error. In this case, there would be
two (nested!) error labels in the error stack. The first call to error would jump to
the last label pushed by waserror; Then, a nexterror could be used to jump back
again (re-raise the exception), or alternatively execution could proceed.

To clarify things, the scheme looks like this
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sleep()

Ureg

syscall

syscall

Proc

trap!

errlab[]

SP

PC

error

(a) Initial context: The kernel starts executing
a system call. PC and SP correspond to the
current kernel context.

sleep()

Ureg

syscall

syscall

Proc

errlab[]
SP

PC

PCSP

error

(b) Waserror is called: A label is set to remem-
ber the context where to continue after any er-
ror.

PC

Ureg

syscall

syscall

Proc

errlab[]
PCSP

errorsyssleep

sleep

SP

syssleep

(c) More calls: the kernel continues executing,
more records pushed on the stack, etc.

PCPC

Ureg

syscall

syscall

Proc

errlab[]
PCSP

errorsyssleep

sleep

SP

syssleep

"Error!"

SP

(d) Error called: An error string is set, and the
context is restored as it was when waserror was
called. This time, waserror returns a different
value.

Figure 4.2: Error handling: labels are set in errlab and used to raise “exceptions”.
waserror remembers the context; error notifies an error and restores the context.

top_routine() {

// one typical idiom...

if (!waserror()){ // (1)

do_the_job();

do other things;

poperror();

}

// another typical idiom...

alloc(some_memory)

lock(a_lock_held);

if (waserror()){ // (2)

free(some_memory);
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unlock(a_lock_held);

nexterror();

}

poperror();

}

do_the_job(){

if (something fails)

error(msg);

}

Things to note: poperror would remove the label pushed by waserror; error would
jump right to the line of waserror again, but that would make top_routine follow
the else arm in 1, and the if arm in 2; nexterror would jump to whatever outer
routine called waserror before top_routine was called, telling the caller that we
suffered an error. In the case nexterror is called, the reason for the error would still
be msg. do_the_job does not need to return the error condition to the caller function,
and how top_Routine does not need to check for any error condition returned by
do_the_job.

One final note, special care has to be taken when calling error (or nexterror)
because some resources could have been allocated (or locks acquired) since the last
call to waserror. Take into account that nexterror does not know anything about
either resources or locks; therefore, the routine that did allocate/acquire those re-
sources/locks must call waserror to release them on errors (like 2 in the example).
To pick up an example, add the line

char *p=malloc(BIGSIZE);

right at the beginning of do_the_job, and consider that “something fails”. Got
the picture?

4.3.2 Error messages

You already saw panic and a couple other routines. They are easy to follow, therefore
I will not comment on them. Nevertheless, the pprint routine is curious.

The pprint routine reports errors not on the console as panic does, but on the
standard error stream for the process. The kernel is assuming that stderr is descrip-
tor number two and is opened for writing; not assuming too much. This is a detail
that shows how Plan 9 was built with the network in mind from the ground up.

UNIX would print in the console any message about problems related to the
current process but not causing a panic (e.g. an “NFS server not responding” when
a network file cannot be used due to server problems). The message is of interest
to the process but not to the whole system. By printing the message in the console,
the user sitting there can see the message, but the process could be started from a
terminal miles away! So it’s better to print the message to wherever the process prints
diagnostics (stderr) and let the process (owner) know. Besides, the user sitting at the
console usually does not care of any problem for processes he has not started.
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4.4 Clock, alarms, and time handling

The clock is used to maintain the system time (when the TSC is not available) and to
implement alarms. An alarm causes a function to be called after an specified amount
of time. There is a system call alarm(2) that can be used to request an “alarm” note
to be posted to the process after the given period of time. By handing the note, the
user process can achieve the effect of the alarm: calling a function after a period of
time.

time(2), cons(3), alarm(2) are manual pages that can be of interest for you
now.

4.4.1 Clock handling

Let’s see how the clock works starting at the clock interrupt.

trap

• /sys/src/9/pc/trap.c:218

The clock interrupt happens and l.s dispatches it to the trap procedure, sup-
plying a pointer to the Ureg structure. Interrupts stay disabled.

• trap.c:242,245

For the clock interrupt, the handler was clockintr.

trap

clockintr() Services the clock interrupt.

• clock.c:43,44

The increment notes in the Mach structure that another tick passed by. The call
to fastticks updates the fastclock field of Mach; that is used by non-boot
processors to update their own TSCs!. Looks like although the boot processor
is in charge of time, other processors try to be in sync.

• clock.c:45,46

The PC image in the Proc for the running process is updated to be real one.
This is also done when entering a system call.

• clock.c:48

Do some time accounting, as we will see in the next section.

• clock.c:49,50

Record execution statistics for kernel profiling, if needed. kproftimer is a
pointer to _kproftimer only when the kprof device has been init’ed. If not
doing kernel profiling, the pointer will be nil and ignored.

• clock.c:51,52

This processor is not really active. It may be exiting (or halted!) but it got yet
another clock interrupt because interrupts are enabled. Ignore it.
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• clock.c:53,54

Some processor paniced (or started shutdown) and the kernel is exiting. If this
is running at a different processor, it notices now and calls exit to terminate
operation at this processor. exit resets the bit for the processor in machs so
that other clock interrupts are ignored at lines :51,52.

Noticed how one processor does not perform immediate actions on another pro-
cessor? The best the author can do is to “kindly request” the other processor
to do something: processors are a living thing.

Lesson: When using multiple processes (processors) to do something,
do not directly interfere with the execution of others; ask them for
anything you want instead. This prevents dangerous race conditions
because only you can do things to yourself.

• clock.c:56,62

Alarms and clock0links serviced here! (see next section).

• clock.c:64,68

Will see in the virtual memory chapter. Some other processor asked we to flush
our MMU by reloading our page table. We do so. The clock interrupt is a good
place to see if anyone else is asking this processor to do anything: the requester
does not need to wait too much (although it needs to wait!).

• clock.c:70,75

More scheduling affairs. Forget this now.

• clock.c:76,79

If the code interrupted was running at ring 3, account for another tick in a
counter maintained in the bottom of the user’s stack, and call segclock to do
profiling on the user code. Interrupts will be reenabled after clockintr returns
to trap, and trap returns to recover the user state.

While kernel is servicing an interrupt or a system call, ureg->cs would not be
UESEL, and no time will be charged to the (interrupted) user.

• clock.c:11,18

To avoid synchronization problems due to multiple clock interrupts on machines
with several processors, the boot processor does clock handling. That is the
meaning of “0” in clock0link. To service “kernel alarms”, i.e. stuff that needs
to be done every tick for the kernel, links a established into clock0link. Lines
:57,62 are servicing these links. A link is just a pointer to a clock procedure to
notify of the clock tick. addclock0linkEstablishes a procedure called at clock 0

ticks.

• clock.c:21,34

Which ones are the links? addclock0link inserts a new link into the list. So,
grep for addclock0link!

– ns16552.h:104

The serial line UART wants uartclock be called every tick.
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– ../port/devcons.c:1015

The console driver wants randomclock be called every tick. That is to
maintain the random number generator (see cons(3)).

– ../port/devmouse.c:85

mouseclock should be called to redraw the cursor. The author knows the
user can be kept happy if the cursor appears to be responsive, even if the
machine is heavily loaded.

It is important both to be fast, and to appear to be fast!

– ../port/tod.c:47

todfix should be called to maintain (fix!) the time of day.

4.4.2 Time handling

The clock ticks, and every tick the tod (time of day) module updates the system idea
of the time of day.

main...

consinit

todinit() Initializes time of day handling.

• ../port/devcons.c:471,475

The console driver init function calls todinit (and randominit). Remember
that this driver was initialized during boot as every other driver configured into
the system.

• tod.c:43,48

todinit calls fastticks to update the hz field of the tod (time of day) struc-
ture. Perhaps a local variable instead of tod.hz would make it clearer that tod
gets its hz when todsetfreq is called, and not now. todsetfreq()Initialize

TOD frequency.

• tod.c:54,60

todsetfreq is calculating the multiplier mentioned in the comment at lines
:8,24; read that comment now.

todfix()Updates the time of day.

• tod.c:147,156

Once per tick, todfix gets called. The last variable retains its value from call
to call, and is used to know if the last call was issued at least one second ago.
The author does not want to do todget too often (to avoid wasting processor
time), but he wants it to run often enough to avoid overflows in the counters
used (note that there are many ticks per second). One second appears to be a
reasonable compromise.

todget()Updates the time of day and returns it.

• tod.c:95,141

todget is doing the actual time of day updating. It is used both to update
the time of day and to get the time of day. It is usual that a routine to get
something can be reused to update such thing before accessing it.
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• tod.c:101,104

If not yet initialized, the routine initializes the module by calling fastticks

and setting up the hz field. In any case, ticks has the value for our TSC based
fast clock.

• tod.c:105

tod.last has the time when todget was last called (1 second ago). Now diff

has the number of ticks passed since then.

Initially, tod.last is zero until either todset is called to set the time of day or
todget runs and notices that tod.last is too far away in the past.

• tod.c:108,109

x has the number of nanoseconds since the epoch time. Note how tod.off is
added. It will be updated later.

• tod.c:111,129

Only the boot processor does time of day handling. Other processors may be
calling todget through devcons (cons(3)) or devaudio (audio(3)) to get the
time of day.

• tod.c:114,121

If the time of day must be adjusted, change it a bit at a time. Values sstart

and send are set by todset. The ilock is used to prevent others from accessing
tod in the mean time and also to prevent interrupts while it is being updated.
ilock is discussed later.

• tod.c:124,127

Not too often, last is updated to record the interval since the last call and off

to record the time since epoch.

Where are overflows? last is used to get in diff the number of ticks since
the last adjustment. If diff gets too big, x could perhaps overflow. In fact it
doesn’t matter where would the actual overflow happen, what matters is that
the author assumes that diff would never be too big and the algorithm is coded
assuming that. The author is ensuring that the assumption holds.

• tod.c:132,135

Time could go backward because time can be changed. In no case a time
change will report an earlier time next time the user asks—that could really
hurt programs that depend on the time behaving properly. Because of the same
reason, the author adjusted time a bit at a time in the above lines, just to permit
the user to adjust the time without big jumps into the future.

lasttime holds the time reported by gettod. One thing is what the routine
reports, and another what it believes.

• tod.c:137,140

Time of day finally reported.

• tod.c:66,89

Time is set by this routine. To see some call, look at devcons.c:1211,1241,
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where the console driver accepts writes from the user to set or adjust the time
of day. A -1 t is the convention for adjusting time a bit at a time: todset

sets sstart and ssend (and delta) so that todget adjusts time slowly. If the
time is not negative, the time is reset to the given value. todset can adjust the
time in multiple ways. Go to devcons.c and try to see when is todset called.
Correlate that with the cons(3) driver manual page.

seconds()Returns the time of day in seconds.

• tod.c:158,168

Just to complete tod, seconds returns the time of day in seconds, and is used
mostly by drivers for time outs and time stamps recorded in seconds.

4.4.3 Alarm handling

You now know how time goes by. User processes can know by reading from the console
driver’s time file. However, users also may want to be notified after a given amount
of time. They also may want to sleep (i.e. be kept blocked and not ready to run)
during a given amount of time.

• portdat.h:79,89

Both Alarms and Talarm are headers for lists of processes.

• portdat.h:75,576 and :585

The Alarms and Talarm lists are linked using the palarm and the tlink fields
of the Proc structure—perhaps the names should be more uniform here. The
author keeps the Alarms list holding all processes with alarms in the current
machine. Each node (Proc) in the list keeps the alarm time in alarm and the
list is kept sorted by call time. The list Talarm is analogous but maintains
sleeping processes.

syssleep() sleep system call.

• sysproc.c:478,493

syssleep calls tsleep to put the calling process to sleep.

sysalarm() alarm system call.

• sysproc.c:495:499

sysalarm calls procalarm for the same purpose. In both routines, arg[0] is
the period of time for sleeping or for the alarm. (see alarm(3)). Forget a bit
about tsleep and look into procalarm.

sysalarm

procalarm() Sets up an alarm for the process.

• alarm.c:84,87

old set to the previously set value for the process alarm. (did you read alarm(3)?).
The previous value is recovered by looking at time in the boot processor.
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• alarm.c:88,91

Canceling an alarm. alarm is set to zero, and it will be ignored later by
checkalarms.

• alarm.c:92

The absolute time for the alarm computed by looking at time in processor
0. Using absolute times for alarms lets the author compare the processor time
with the alarm time without much arithmetic nor race conditions. It also avoids
adjusting the alarm field as time goes by.

• alarm.c:94,102

First the Alarms list locked, to avoid races with other processes using alarm

or the alarm list—e.g. alarmkproc uses the list to notify expired alarms, and
should not use the list while it is being modified. Then search any existing
alarm entry for the current process. (Saw the pointer-to-pointer-to-node thing
again?) Line :98 removes the entry if it exists.

• alarm.c:104

By this line, the process has no previous alarm registered in the system: not in
the list, no pointer to any “next” alarm entry.

• alarm.c:105,116

Alarms list not empty, the node f with the first alarm after the one being
installed is located. That node is linked after the current process at line:109,
and the current process linked in place of that node at line :110. If this alarm
is going to be the longer one, l in line :115 points to the “next” pointer in the
last node, and the current process is linked there.

• alarm.c:117,118

Alarms list empty, easy.

• alarm.c:119,123

One way or another, the current process is now linked into the alarm list, the
alarm time is recorded, and the list unlocked. The goto is used to share the
code at done. It is breaking the loop and the conditional in a clear way. Remove
the goto, and the code would become less clear.

trap...

clockintr

checkalarms() Checks for expired alarms.

• alarm.c:44

checkalarms will be called later by clockintr.

• alarm.c:49,53

It looks at the head of the alarms list (no lock!) and calls wakeup if the first
alarm expired. The list is not locked because the kernel still runs with interrupts
disabled and because it is checkalarms the one removing alarms from the list.
So, it is safe to look into the first node because it would not disappear under
checkalarms feet. Can you tell know why to cancel an alarm the alarm field
of Proc is set to zero?
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By the way, what happens if while the alarm is pending the process dies? Hints:
the alarm list points to processes; a zero alarm is ignored; alarm removes any
pending alarm before installing the new one.

Ignore the rest of checkalarms by now.

alarmkproc() Entry point for the alarm kernel process.

• alarm.c:12,38

Remember from the previous chapter that a kernel process is running alarmkproc?
We have an endless process scanning the alarm list. The first time it entered
the loop, it locked alarms, saw that no alarm was pending, unlocked it, and
called sleep on alarmmr. So, by the time a process is setting up an alarm in
the code just discussed, alarmkproc was probably “sleeping on alarmmr”. The
call to wakeup at line :53 awakes alarmkaproc and it continues running right
after line :36. (The return0 is a function that returns zero, but ignore that
now).

The author uses a kernel process to post alarm notes to processes with expired
alarms. This process is subject to regular process scheduling and may sleep
when locks cannot be gained.

• alarm.c:18,19

The current time recorded in now, and the list locked. If the list cannot be locked
because other processor is calling alarm, the kernel process will wait here until
the lock is gained.

• alarm.c:20

Pick up the head of the alarm list, and keep on scanning while the alarm time
is past. The alarm does not happen at the exact time it was scheduled at; it
may happen later.

• alarm.c:21

If the alarm was canceled, alarm is zero and we must ignore the entry.

• alarm.c:22

The lock on debug is needed to post the alarm note. If we cannot get it,
better break the loop and go to sleep until next time checkalarms awakes
alarmkproc again—yes, starvation is theoretically feasible, but so improbable
that who cares?

I hope you will appreciate that there are algorithms that are theoretically not
good, but the author still prefers to use them than to modify them to keep
theoreticians happy and incur into more overhead. This does not means that
theory is not important; this only means that you have to balance theory with
what you know from practice.

• alarm.c:23,28

An alarm note is posted for the process, debug unlocked and the alarm reset
(to zero). Any error during postnote is ignored (poperror!). The alarm kernel
process better keeps on trying to post alarm notes, than die if an error happens
while posting one. This is one place where waserror is called not to deallocate
resources on errors, but to ignore errors.
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trap...

clockintr

checkalarms

• alarm.c:55,56

Back to checkalarms, it does by itself the processing of “sleep alarms” using
the Talarm list. If the list is empty, nothing else has to be done.

Can you guess why the author uses two different alarm lists?

• alarm.c:58,73

For any talarm expired, a wakeup on trend is issued (and the process removed
from the talarm list). When twhen is zero, the timer is ignored.

This is less serious than posting a note, and I guess that is the reason why
talarms are handled directly by checkalarms. Talking about reasons, there is
one for having two lists (Talarm and Alarms), a process may setup an alarm
and go to sleep waiting for the alarm to happen. So, two different lists have to
be maintained. The Alarms list always has a postnote as the associated action
and does not need to accept a user-supplied handler.

Talarm keeps kernel timers used whenever the author wants to be notified after
a while. Alarms keeps alarms set for user processes. More clear now?

syssleep

tsleep() Sets up a timer and puts the process to sleep.

• proc.c:525,570

tsleep is the one placing processes into the talarm list. A function and an
argument is given. The “t” is Talarm is for “timer”. The kernel uses Talarms

to setup timers that call a given function when expired. After the discussion of
Alarms, I think the code should be mostly clear. tsleep can be called several
times for the (current) process (cf. lines :538,548) and the previous timer is
canceled in that case. The sleep call in line :567 is the one that actually makes
the process sleep. I defer the discussion on sleep/wakeup until later.

delay()Waits a bit.

• clock.c:83,100

To complete the discussion about timing, delay routines should delay for so few
time that they loop to implement the delay. It would not pay to setup a timer
because of the small delay time. (Well, admittedly, delay is called to make the
kernel wait for long periods of time too; guess why?)

4.5 Scheduling

Plan 9 has preemptive scheduling, which means that from time to time processes
are preempted and moved out of the processor. To now when a process should be
preempted, the system clock is used. Most scheduling is done by sched and runproc

in ../port/proc.c, as we saw while learning about system startup. Interestingly,
there is a resched function defined in ../port/portfns.h, but does not seem to be
defined; just a relic.
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4.5.1 Context switching

sched() Switches to another process.

• proc.c:91,113

We saw sched before. If you grep for it, you will find that it is called mostly
whenever the current process should yield the processor to let another process
run. In particular there are two points of interest where sched is called:

– ../pc/trap.c:250,265

The author preempts processes here when a higher-priority process is wait-
ing for a processor.

– ../pc/clock.c:70,75

The author calls sched from the clockintr routine. Let’s start here.
Assume that a process is running as shown in figure 4.3 and look at that
figure while reading below.

4.5.2 Context switching

trap

clockintr

sched() Switches to another process.

• clock.c:70,71

Another clock interrupt caused a call to clockintr. After checking for Alarms
and Talarm, if there is no current process (yet) or the state of the current process
is not Running we return from the interrupt. If the state is not Running, it is
likely that the process is being moved from one scheduling state to another;
therefore, we better do nothing. For example, if the process is going into sleep,
sched will be called by sleep. Routines like clockintr try not to interfere
when the job will be done by someone else.

• clock.c:73,74

If any process is ready to run, it calls sched. anyready checks the nrdy global
in proc.c:32. Things look as shown in figure 4.3(b).

trap

clockintr

sched() Switches to another process.

• ../port/proc.c:91

sched is called. Another process should run on this processor. This involves
both choosing the next process and switching to it. The first task (implementing
the scheduling policy) is done by runproc, the second task is done by sched.

• proc.c:93,94

Assume there is a current process (interrupted by the clock interrupt). We
disable interrupts from now on.
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Figure 4.3: The kernel uses a scheduler stack to switch processes. There is one label
per processor to switch to the scheduler and one label per process to remember where
the process was within the kernel. Thick arrows show where the processor is running.
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• proc.c:97

Account the number of context switches.

• proc.c:99

procsave saves the machine dependent part of the process. procsave()Saves

mach. dep. context.

• ../pc/main.c:575

procsave starts running using the pointer to the current process as a parameter.

• main.c:577

If the process used the coprocessor

• main.c:578,579

If the process is dying, there is nothing to do but to reset the FPU.

• main.c:581,589

But if the process is not dying, the FPU state is saved into the fpsave entry
in the Proc structure. Next time we switch into this process, the state will be
reloaded into the FPU. Pay attention to the comment.

• main.c:591

Once saved, the process fpstate is inactive, meaning that there is no FPU state
for this process in the real FPU. We will see more about FPU handling soon.

• ../port/proc.c:100

setabel called with sched for the current process. It saves the current stack
pointer and program counter into label (see fig. 4.3(b)). And returns 0! (note
the line ../pc/l.s:502). The kernel stack for the current process has activation
frames for sched, clockintr, trap, and the saved Ureg for the process moving
out of the processor.

• proc.c:105

the gotolabel reloads the program counter and stack pointer with the ones
recorded in the sched label of the Mach structure for the current processor. If
you remember from the starting up chapter, the label was set in schedinit.

schedinit() Calls the scheduler.

• proc.c:58

And here we are!, the stack was the initial kernel stack used during boot (above
the Mach structure), and the program counter was set to point right before line
:58. The old process is mostly gone, although up still points to it—it is not
null.

Things are like in fig. 4.3(c); the scheduler stack is used to switch from one
process to another.

• proc.c:59

Starting to switch. We set the proc pointer in Mach to null.
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• proc.c:60,63

If the process is still runnable, but is being preempted, ready makes arrange-
ments so it gets Ready to run in the future.

• proc.c:64,79

If the process is dying, the state is adjusted, MMU machine dependent structures
(page tables) are released (the prototype page table set up during boot will be
used thereafter), and the process will be linked into the free process list. More
about process death later.

• proc.c:80,81

The process state is saved, so set mach to zero, and forget about the current
process.

• proc.c:83

sched called again, with no current process. We are still running in the scheduler
stack, like shown in fig. 4.3(d). It is a good thing to have a scheduler stack.
It allows procedure calls in occasions when the previous process kernel stack
should not be used; i.e. to switch to a another process, the author does not
need to keep on using the current stack. Besides, it is convenient when there is
no current process.

schedinit

sched() Switches to another process

• proc.c:107

Back in sched, runproc selects another process to run. You know from the
previous chapter that it loops when no ready process exists.

• proc.c:108,110

The process is linked to the processor and set running.

• proc.c:111

Switched to the page table for the next process. We are in the address space of
the coming process, but kernel addresses are shared, so don’t worry.

• proc.c:112

the gotolabel reloads the saved kernel context (stack and PC) for the coming
process. That context was probably saved at line :100 when the new current
process was last preempted. gotolabel reloads the the stack and PC, pretend-
ing to return 1 from the setlabel that filled up the label. the kernel switches
to the kernel stack for the coming process. We end up as shown in figure 4.3(e).

• proc.c:101

setlabel returned true, so procrestore is called to reload machine dependent
processor context, interrupts are allowed again, and sched returns. For the
PC, procrestore is defined to do nothing (../pc/fns.h:98). Probably, the
setlabel for the current process was made while running sched, called from
clockintr, called from trap, so the return starts the unwinding of the kernel
stack. When trap finally returns, the IRET in l.s will reload the saved Ureg

for the current process—see fig. 4.3(f).
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One more note: the state of the new current process could be other than sown in
this example execution. In general, that process could have a kernel stack correspond-
ing to any path of execution leading to a call to sched. You will see more examples
of that during this chapter.

4.5.3 FPU context switch

You saw how procsave and procrestore were used to save and restore the FPU
state. But how is the FPU context really handled? mathinit()Initializes FPU

traps/interrupts.

• ../pc/main.c:552,559

FPU traps were initially enabled by main. procsetup()Initialize FPU for a new

process.

• main.c:565,569

Initially, the fpstate is set to FPinit, as you saw in the previous chapter, and
the FPU set to an offline state. mathemu()Services the FPU emulation fault.

• main.c:517,520

If the process uses the FPU, it will get an emulation fault, because the FPU
was set off. mathemu calls fpinit to initialize the FPU (enable it) and sets the
fpstate to FPactive (because the process is known to use the FPU).

• ../port/proc.c:99

If a new process is getting switched in, the FPU state for the previous process
(which used the FPU in our example) is saved. . .

• ../pc/main.c:575,592

because it was FPactive. Its FPU state is now FPinactive.

If the next process does not use the FPU, its state will be FPinactive.

When the first process (that used the FPU) is switched back again, procrestore
does nothing!.

• main.c:521,535

When the process starts using the FPU again, another FPU fault leads to
mathemu. As it is FPinactive, its FPU context was saved and must be reloaded.
Lines :533,534 do that. The process is now FPactive, as it was before the first
time it was preempted in our example. I hope you will see how the author
avoids switching the FPU context when the process does not use the FPU.

Some other OSes try to avoid even saving the FPU state, by keeping track of who
did use the FPU last and saving that state only when it is absolutely necessary—
i.e. before another process uses it. But, take into account that Plan 9 runs on
MP, and the FPU state might be loaded into a different processor the next time.
Things are more simple in the way they are in the code, and fast enough.
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4.5.4 The scheduler

How does runproc select the next process to run? It applies a scheduling policy to
select a process. Let’s look at it. But we should start by the routine allowing processes
to run.

Getting ready

• ../port/proc.c:24,33

Processes willing to run are either Running, or they are Ready to run. Ready
processes are linked into Nrq scheduler queues. Each queue has processes of a
given priority, and high-priority processes get more CPU than low-priority ones.
Unlike UNIX1, Plan 9 uses higher priority values for higher priorities!

ready() Puts a process in the ready queue and recalculates priority.

• ../port/proc.c:142

Before running, the process must be set Ready and linked into a ready queue—so
that later runproc can pick it up.

• proc.c:147

With interrupts disabled (because nobody should touch the scheduler queues),

• proc.c:150,153

if the process was running (is being preempted), rt is incremented. rt counts
the “running time” for the process measured in quanta. Every time the process
goes from Running to Ready, rt is incremented. So rt measures how many full
quanta the process just consumed. pri is set to the formula:

art+2rt
4

Squantum

• proc.c:153,157

if the process was not running (it is not being preempted), the average running
time, art, is set to art+2rt

4
, and pri is set to

art+2rt
4

Squantum

—rt is reset to zero. Wait a bit to understand what is going on and keep on
reading.

Squantum is set to HZ+Nrq−1

Nrq
in proc.c:138. If the number of run queues is

small with respect to the machine HZ (ticks per second), Squantum is almost
HZ
Nrq

, dividing the HZ evenly among the run queues. If Nrq is big regarding HZ,

Squantum is almost Nrq

Nrq
. But this formula is empirical and only the author

knows how it was adjusted to yield the current expression. For our PC, HZ is
82 and Nrq is 20, yielding a Squantum of 5. To augment pri in one, rt has to
be incremented by 5/2, or art has to be incremented by 5.

1In UNIX, priority 0 is better than priority 10.
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So, every time the process gets Ready, (i.e. is preempted), pri increases slowly
as rt and art increase. rt influences more pri than art does. Things can
change because if the process leaves the processor voluntarily (i.e. gets blocked,
and after a while it goes from a non-ready state to Ready) its rt is set to zero,
and its art gets decreased. The order of lines :154,157 is ensuring that changed
values are used next time and not now.

• proc.c:158,160

Here it is, pri is set to basepri minus the pri value just computed. If the com-
puted pri was small, the process priority would be close to basepri; otherwise
it can go all way down to lower values, or even zero. So, for the process, it is
bad when the computed pri gets big. Should the process not block, neither rt
nor art would be decreased, so the computed pri gets bigger and basepri-pri
would be smaller; should the process block, rt will be reset, and art will be
decreased so that the computed pri gets smaller and basepri-pri would get
closer to basepri. If the same process keeps on blocking (e.g. gets Running,
computes a bit, reads a file and blocks, gets unblocked, and so on), its final pri
will end up being basepri. If the process keeps on running, its final pri will be
very low. Interactive processes tend to block, and they are not penalized; CPU
intensive processes are penalized. By the way, do not pay much attention to
the exact details of the formulas, other similar ones are likely to work too; these
things come out of the author’s experience with the system: they are empirical.

Did I already said that these things are empirical? Don’t forget.

• proc.c:162,170

If the process basepri was above PriNormal, avoid the priority decreasing too
much. If the process is waiting for a lock, its priority would be just PriLock.
Otherwise, its priority is the pri just computed.

• portdat.h:522,525

PriLock is 0, a very low priority value. If the process is waiting to gain a lock, it
is not doing anything useful (yet), so the system penalizes it. It is better to let
the process holding the lock run, and penalizing ourselves is a fine way of favoring
that. Besides, note that PriKproc (basepri for kernel processes) and PriRoot

(basepri for processes running /* files) are above PriNormal. That means
that both kernel processes and “root processes” will be kept above priNormal,
no matter what they do. The system gives them priority over normal process,
that are below PriNormal. Processes in both priority classes (above and below
PriNormal) get their priorities adjusted during time, but they stay within the
same class.

Both root processes and kernel processes are working on behalf of the whole
system. It makes sense to give them priority because otherwise the whole system
would suffer. Try to find out which ones are the kernel and root processes in
your Plan 9 box (hints: how are you using your local disk files? how are you
talking to other nodes in the network? how are you using your swap file? did
you look at the mkfile?)

• proc.c:171
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There is a run queue for each priority level. Set rq to be the queue for the
process priority this time.

• proc.c:173,184

The process is set Ready and linked into its priority queue. readytime is set to
the time the process was set Ready.

• proc.c:185

If interrupts were enabled at line :147, they are enabled now; otherwise they
stay disabled. The reason for using splx is that ready must both lock the
run queue and disable interrupts; as ready can be called either with interrupts
enabled or disabled, the author restores things as they were.

In few words, you now know that Plan 9 uses dynamic priorities within two priority
classes.

Picking up a process

Finally, sched calls runproc to pick up a process to run. You already read runproc

in the previous chapter, but let’s look at some details now.

sched

runproc() Elects a process for running.

• proc.c:204

Once out of four times, runproc forgets about processor affinity and priority,
and picks up the process waiting longer—trying to avoid starvation and to
balance the load of processors here.

• proc.c:211,219

Low priority queues are scanned first! xrq points to the run queue with the
minimum readytime found for the head process, and rt is set to the minimum
readytime for that process. By line :219 the lowest priority process sitting
at the head of a run queue that was ready before the other ones is located by
xrq. Just the head is used, to avoid locking the ready queues while scanning
for processes.

• proc.c:220,226

If there is such a process, rq is set to the queue where it stands, and p to the
process selected. The goto goes to the place where runproc tries to run it.
If there is no such process, runproc loops again; but next time it will honor
priorities and affinity. If the process is not wired to the processor, movetime is
set to zero, that is a really small value and will allow the process to move.

• proc.c:232,241

Three out of four times, run queues are scanned from high to low priority; as
they should. If there are no processes, runproc keeps on looping. The process
chosen is the first one that either

– is the first in the queue that reached its movetime (did not moved recently;
same reasons as above), or



126 CHAPTER 4. PROCESSES

– is the first in the queue that did run on this processor (to keep processes
running within their favorite processors).

By the way, the author didn’t really choose a process, but a run queue instead!

The queues were not locked. But the worst thing that may happen is that the
process gets removed from the ready queue (by another processor) and runproc

will find its rnext pointer to be nil. Since Procs are allocated statically in a
big process table, there are no worries about crossing a dangling pointer.

• proc.c:245

got a process.

• proc.c:246,248

Someone is using the queues (more than one processor), try again.

• proc.c:250,255

Now a process is chosen, but using the rq selected before. If things have changed,
the fortunate one may be different from the process than caused this ready queue
to be selected—this is the price for avoiding locks before. l is set to the process
before the one selected, and p to the first one with affinity for this processor:
the selected one.

• proc.c:260,263

No process selected, try again. If the reason was that no process had affinity
for the processor, in a couple of loops runproc will ignore this fact.

• proc.c:264,271

The process removed from the ready queue. It is no longer ready but running.
l is used to remove it from the list. Counters adjusted accordingly.

The process rnext is not cleared!, if any other processor is scanning through
the ready queues, it could still jump over to the previously next process in the
ready queue, even though the process is not ready. The author is careful to
avoid unnecessary locks in places where locking would mean severe performance
degradation.

• proc.c:272,273

A scheduling bug?

• proc.c:276,280

And there it goes. sched will switch now to it, as we saw before.

Processes tend to be chosen from the head of the list, and are inserted at the tail in
ready. The effect would be a round-robin for processes with the same priority—if
you forget about affinity or if there is only one processor.

There is one thing to consider. What if a high-priority process was blocked, and it
suddenly gets Ready? That can happen because we are running a low priority process
and an interrupt notified the kernel that the event the process was waiting for, just
happened. The answer to the question is in trap.

trap
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• ../pc/trap.c:255,265

Conditions say that: it is an interrupt but not the clock or a timer; there is
a currently running process, and there are higher priority processes waiting.
Interrupts happen often, but clock and timer interrupts happen really often.
Checking for a higher priority process when a frequent (but not ubiquitous)
interrupt happens is a way of checking often (but not always!) for a high priority
process. The preempted flag is set when the author commits to preempting the
current process in favor of the higher priority one, the check at line :258 ensures
that this code would be ignored if the process is already being preempted. A
simple call to sched ensures that the high-priority process will be able to run.

schedwill not return before the other process runs. When it returns (the current
process has been switched back to the processor), preempted will be reset, and
another interrupt may yield to a new preemption.

The slphi at line :262 is problematic, because the new interrupt might cause a
preemption before doing a return-from-interrupt for the current one. Think that
each interrupt pushes more frames into the kernel stack, and they are popped
only when returning from the interrupt. If enough interrupts arrive, the kernel
stack would overflow and the system would probably crash. But the preemted

check seems to suffice to avoid that.

You know affinity, but processes can be also wired to a processor.

procwired() Wires a process to a processor.

• proc.c:354,383

procwired wires p to any processor (if bm is less than zero), or to the processor
specified by bm otherwise. Most of the routine is picking up a processor to
wire the process to. The one with less wired processes is used. Perhaps a new
m->nwired field would save most of this code. A big movetime is given to the
process so it never(?) moves.

Finally, I don’t discuss it, but accounttime in ../port/proc.c:1210,1233main-
tains values for processor load averages and process run times.

4.6 Locking

During the description of what the code is doing, you saw lots of locks and locking
routines. I skipped all of them. Now it’s time to discuss locking one you know about
process scheduling and process priorities.

Because Plan 9 runs on MP machines, there are several locking primitives em-
ployed. Let’s see them from the most simple to the most complex.

4.6.1 Disabling interrupts

Remember that within the kernel setlabel and gotolabel are used to provide corou-
tines. Therefore, within the kernel, the kernel decides when to leave the processor by
using gotolabel in favor of another kernel routine. So, you could say that ongoing
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system calls for other processes are not an issue regarding mutual exclusion for critical
regions within the kernel.

What? You don’t understand the meaning of “mutual exclusion” or “critical
region” (go, reread the material for the OS course you attended several years ago and
come back later).

However, while the kernel is executing a routine in favor of a user process, an
interrupt may arise. The interrupt will start a different routine of the kernel while
the previous one is stopped. If a system call is being executed and an interrupt arrives,
the interrupt routine can try to access resources used by the previously ongoing system
call. Therefore, the kernel must prevent interrupts from happening while touching
data structures that can be manipulated by the code executing after the interrupt.
If you take into account that an interrupt can lead to the suspension of an ongoing
system call and a context switch to another process, you can imagine that code
executing after the interrupt can touch almost any data structure in the kernel.

According to what I just said, if there is a single processor, disabling interrupts
would ensure mutual exclusion among processes while executing within the kernel.
While touching an important data structure, the kernel can disable interrupts and
it knows nothing will “preempt” it in the meanwhile. There can be more than one
processor, but even so, there are structures that are handled (read: written) only
by one processor (e.g. Mach for each processor) and can be protected by disabling
interrupts. Other critical regions, like the code doing a context switch for a process,
are also protected this way. How are interrupts enabled and disabled?

The abstraction used to enable/disable interrupts is the “processor priority level”.
Imagine that the processor is running at a given priority (0 or 1). While running at
a low priority, interrupts (high-priority events) can interrupt the processor. While
running at high priority, interrupts cannot interrupt the processor. This comes from
the days UNIX was implemented because the processor used actually worked this
way.

spllo() Sets processor priority low.

• ../pc/l.s:433,437

spllo (set priority level low) is used to enable interrupts. It pushes the flags
word in the stack and pops it back into ax (the return value of spllo). The
interesting part is sti, which sets the “interrupt enable” bit in the flags word.
The author uses the stack to move flags into ax because the only way flags

can be accessed on the Intel is by pushing/popping it on/from the stack. The
value returned by spllo can be used to restore the previous “processor priority
level” (i.e. the interrupt enable bit) as it was before the spllo.

splhi() Sets processor priority high.

• ../pc/l.s:423,431

splhi (set priority level high) is used to disable interrupts. Lines :424,426 set
in m->splpc the return PC as saved in the stack by the call to splhi. That is,
m->splpc holds the PC of the instruction that called splhi; That is for profiling,
but can be used for debugging too. If somehow interrupts are disabled and they
shouldn’t be, you could know who is guilty for that. The real work is done
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at line :430: interrupt enable cleared. The old value of flags is returned as in
spllo.

splx() Sets processor priority as given.

• ../pc/l.s:439,448

splx (beware that it continues until the ret), exchanges the flags and the value
passed as a parameter. If the kernel calls spllo and, later, passes the value
it returns to splx, flags would be restored as they were; i.e. the priority level
would be restored. Lines :440,442 are saving the caller’s PC in m->splpc for
the same reason as above. Line :445 is taking the first parameter (FP is the
frame pointer).

• ../pc/l.s:450,451

spldone is not used as a function. If spllo or splx is executing, the PC
is between spllo and spldone. If you look at ../port/devkprof.c:38,43

you will see how are m->splpc and spldone used. The routine _kproftimer

maintains statistics about what parts of the kernel execute during what times,
the author seems to want to charge the spl times to the caller and not to the
routines themselves.

4.6.2 Test and set locks

By using an atomic tas instruction, which tests for the value of a word and sets it to
true value, mutual exclusion can be achieved even with interrupts enabled. That is
important because it is overlay expensive to disable interrupts on all processors—and
it is also complex. So, kernel routines can agree that when a lock word has a true
value (non-zero), the critical region cannot be entered. By using an atomic tas, the
previous value of the lock can be tested and set without race conditions. The first one
to set the lock, acquires it. Another useful variant of tas is xchg, which exchanges a
register with a memory position atomically.

tas() Tests and sets a word.

• ../pc/l.s:462,466

The Intel only has xchg, so tas uses the intel instruction to emulate a tas. The
parameter passed is the lock being tested and set. The value set (0xdeaddead)
is irrelevant. Line :465 is atomic!

xchgw() Exchanges a two words.

• l.s:472,476

xchgw is a wrapper for the Intel instruction xchg. Two parameters passed are
the “register” and the memory position being exchanged atomically. By the
way, xchgw seems to be used only the astar device, while tas is the routine
actually used for mutual exclusion by the kernel. So, if astar had another way
of doing its business, xchgw could go away—as seemed to happen with xchgl.

The kernel does not use tas directly, but uses routines provided by taslock.c

instead. With the help of several machine dependent routines, most of test-and-set
code is kept portable.
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lock() Acquires a test-and-set lock.

• ../port/taslock.c:31

lock acquires a lock using tas. The Lock structure is defined in ../pc/dat.h:24,31;
you will see how it works now. getcallerpc()Gets the PC after the instruction

that called it.

• ../port/taslock.c:36

getcallerpc uses the address of the lock parameter to locate the PC of the
caller. If you now the address of the first parameter, you can know where in
the stack is the return PC and obtain that value. The PC of the caller is stored
in Lock.pc for debugging purposes. If a lock has problems, it is useful to know
who did set the lock.

• taslock.c:39

Here it is. tas tries to set the lock, which is actually Lock.key. If the lock
was cleared before tas executed, the return value would be zero; otherwise, the
return value shows that the lock is already held by someone else.

• taslock.c:40,43

The Lock structure is updated to record the process setting the lock and the
PC that called lock; all done. isilock is a boolean stating that the lock was
set by ilock and not by lock. More about this soon. Most of the time, the
lock would be not set and the kernel would execute these lines. If the lock is
found to be set most of the times, that would show contention for a given lock
within the kernel. The affected data structure would better split in several ones,
or some of its parts locked separately, and perhaps a different kind of lock used
(Noticed that Proc has several locks?).

• taslock.c:46

glare counts how many times the lock couldn’t be acquired at the first attempt.

• taslock.c:47

Trying to get the lock. If there is a current process and it is running (i.e. the
lock is not requested once the process was committed to block) the kernel can
call the scheduler to wait for a while until the lock be released.

• taslock.c:48,53

If the scheduler can be called, save the process priority so it can be restored
later, and set the priority to PriLock (i.e. to zero, so that almost every other
process would be preferred by the scheduler). If the process priority is kept as it
is, and the holder of the lock has a lower priority, the scheduler could prefer to
switch back to the current process instead; So, the author is making sure that
such thing would not happen. lockwait is set in Proc to state that the process
is waiting for a lock; the scheduler would maintain the priority set to PriLock

no matter what the process does.

• taslock.c:55,56

Now waiting while trying to get the lock repeatedly. The number of “attempts”
is recorded in inglare. When contention for locks appear, the author can at
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least now that in mean, inglare/glare loops are needed. If the relation gets
too big, it can be a symptom that locking has to be adjusted.

• taslock.c:58

Important loop! If there are several processors, the current one has l->key on
its cache. If the processor does not write the lock, it will not interfere other
processors because the lock value will be read from the cache. If the processor
would tas the lock instead, it could lead to a high bus contention—because the
value would be written and that usually means that the value has to be put into
main memory, or that the processors must talk to update their caches. So, do
not even try to set the lock until we know it is no longer set.

• taslock.c:59,65

Just one processor, and can call the scheduler. Do so (see figure 4.4(a)). The
i counter is used to report we are “looping many times” once per thousand
iterations.

Processes

switch

Running

Ready

TIme

lock() unlock()

lock()

#1

#2

(a) test-and-set lock on uniprocessors. It is bet-
ter to context switch if the lock cannot be ac-
quired.

Processes

Running lock()
#1

#2
Running

at proc 0

at proc 1 lock()

unlock()

unlock()

wasted
time while waiting
for the lock

TIme

(b) test-and-set lock on MP. It is better to wait
for a while.

Processes

Running lock()
#1

#2
Running

at proc 0

at proc 1

unlock()

TIme
Ready

lock()

switch

(c) test-and-set lock on MP in case a context
switch was made. The time used for context
switching at processor one is wasted time, since
no user process is running in the mean time.

Figure 4.4: Behavior of test-and-set locks.

• taslock.c:65,70

More than one processor. It is better to wait for a while until the lock is
released by another processor (see figure 4.4(b)). tas locks should be held only
during small amounts of time, so it would not pay to do a context switch (see
figure 4.4(c)). In the case of a monoprocessor, it would be a waste to keep on
looping because unless we release the processor the lock holder would not run.
Note the high number of iterations until reporting that we have problems.

• taslock.c:72

Out of the while, so the lock was released when we last checked it in line :58.
Now try to set it.
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• taslock.c:73,80

If got the lock, update the Lock structure and restore the previous priority in
case it was set to PriLock. If did not get the lock try it again—note that no
tas will be tried until the “lock-read-only” while finishes.

canlock() Tries to acquire a test-and-set lock.

• taslock.c:136,145

canlock tries to set the lock but just once. It lets the caller know whether the
lock was acquired or not. Routines willing to give up or to do something else
when a lock cannot be acquired can use canlock. You already saw how canlock

was used by the scheduler to give up and try again. The implementation of
canlock uses tas as lock does, and initializes the Lock structure appropriately.

unlock() Releases a test-and-set lock.

• taslock.c:148,158

Releasing a tas lock is easy, just set the lock (l->key) to zero and the next tas
will return zero. Note how the lock is checked to be set. The call to coherence

ensures that the lock value is seen by other processors—a “no-op” on Intels.

ilock() Interrupt-safe version of lock.

• taslock.c:85,86

ilock is a variant of lock. The lock routine works fine when it comes to
mutual exclusion between different processors. However, the kernel may also
want mutual exclusion between a process running inside the kernel (e.g. a
system call) and an interrupt handler. Imagine that the kernel gets a lock on
the memory allocator, and an interrupt arrives. If the interrupt handler wants
to allocate memory, it would try to acquire the memory allocator lock. You get
a deadlock! This is shown in figure 4.5.

Processes

Running lock()
lock()#1

#2 TIme

switchInterrupt handlers

Figure 4.5: Acquiring locks without ilock. The process 1 acquires a lock, and gets
interrupted. The interrupt handler tries to acquire the lock and has to block!. The
lock will never be released.

The way to avoid the deadlock is to disable interrupts besides acquiring the lock.
By disabling interrupts, no interrupt handler can request the lock because no
interrupt handler will run (in the current processor) while the lock is held. Other
processors are not an issue because they can try to acquire the lock without a
deadlock.
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The author could disable interrupts and then call lock, but if the lock was
not acquired, interrupts might be cleared for just too long. The ilock routine
tries to acquire the lock and restores the previous interrupt state when the lock
cannot be acquired.

• taslock.c:95

Interrupts disabled, the previous priority level kept at x.

• taslock.c:96,102

If tas got the lock, return with interrupts disabled and the lock set. (isilock
records that the lock disabled interrupts too). The previous priority level is
saved in l->sr. The unlock routine needs that to restore interrupts to their
previous state.

• taslock.c:112,113

A single processor available, how could the lock be released if interrupts are
disabled? This message would mean that usage of locking primitives has to be
fixed.

• taslock.c:117,120

While the lock is held by another process, restore the interrupt status. Once the
lock is released, interrupts are cleared before trying again to acquire the lock.

iunlock() Interrupt-safe version of unlock.

• taslock.c:161,177

Locks acquired with ilock are released with iunlock. Again, the author ensures
that it is an ilocked lock. The last two lines are manually setting splpc to be
the PC of the caller of iunlock, and then doing the rest of splx (remember
that splx did fall down to splxpc?).

4.6.3 Queuing locks

A Lock can be used to protect small critical regions. When the lock is being held
for a long time, or when there is much contention on a lock, another kind of lock is
needed. If processes would have to wait for a long time to acquire a lock, they better
sleep while waiting. When there is much contention for a lock, it is also better to
respect the arrival order of the lock requesters; otherwise you can get starvation.

• ../port/portdat.h:60,66

A Qlock is a lock that maintains a queue of processes waiting for the lock. The
head and tail fields maintain the list, the locked flag shows whether the lock
is held or not. And finally, the Qlock structure has to be protected for race
conditions: use is a Lock that must be held to operate on the QLock. use will
be held during a small amount of time—as soon as the process either gets the
Qlock or gets queued, the use lock is released. The author is building locks
appropriate for big critical regions and high contention using the simple tas

locks as the building block.

qlock() Acquires a queuing lock.
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• qlock.c:17

qlock is the routine called to acquire a QLock.

• qlock.c:21

Important! to protect q, a tas lock is acquired.

• qlock.c:23,27

If the q lock is not set, set it and return. In this case the tas lock is released;
it was held only while the QLock was manipulated.

• qlock.c:28

The number of processes queued on a QLock increased. The author can know
whether the queues of QLocks are really used or not. A kernel is a living thing,
the only way to issue a good diagnostic is by asking it about its symptoms.

• qlock.c:29,38

The process is queued in the QLock. There must be a current process, otherwise
there is nothing to queue. See how the process is queued in the tail of the queue?

• qlock.c:39

The process was not Ready, now it is Queueing and will not run again until
extracted from the lock queue and placed back in a ready queue.

• qlock.c:40

The PC of the caller recorded to find out guilties for locking bugs.

• qlock.c:41,42

The QLock was protected by the use lock during all this time; now release the
tas lock and switch to a different process. The current process is queued waiting
for the lock.

canqlock() Tries to acquire a queuing lock.

• qlock.c:45,57

Like canlock, canqlock tries to acquire the lock and returns reporting whether
the lock was acquired or not. canlock is used on the use lock (because canqlock
should not block).

qunlock() Releases a queuing lock.

• qlock.c:59,76

qunlock releases a QLock. If there are processes in the queue, the one at the
head is extracted and set Ready. That process has the lock (Hence locked is
kept set to true). If there is no process waiting for the lock locked is set to
false. QLocks are acquired in FIFO order regarding the request time.

There are many places where QLocks are used. They are used wherever the lock
is likely to be held for a long time—and processes are likely to wait for the lock a
long time. For instance, I/O devices like cons, pipe, etc. use QLocks because I/O
operations are likely to be slow and take a significant amount of time.
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4.6.4 Read/write locks

The locks discussed above could suffice. However, many times there are several pro-
cesses accessing a data structure just for reading it, and there are several other pro-
cesses writing the data structure. It makes no sense to serialize the readers of the
data structure. When there is a single processor, readers would necessarily read the
data structure once at a time; but on multiprocessors, several processors could be
reading the same data structure at the same time without any problem. With the
locks seen before, multiple processors willing to read the same data structure could be
stalled, waiting for another reader to finish. That is why there are read/write locks.
While you read below, see figure 4.6 as an example of how R/W locks would block
readers/writers. The figure should be clear by the end of this section.

Processes

rlock

rlock

wlock

runlock

runlock

rlock

wlock

rlock

wunlock

wunlock

runlock

Time
blockedready/running

Figure 4.6: Read/Write locks. Typical scenario showing how readers/writers acquire
the lock.

rlock() Acquires a R/W lock for reading.

• qlock.c:79

rlock tries to acquire a RWLock for a reader process. If will be able to acquire
the lock if there is no one writing the locked data structure—or waiting to write.

• qlock.c:83

Again, using a tas lock to protect the lock data structure.

• qlock.c:84

Now it is important to know an overall number of readers and writers for
RWLocks; that can reveal symptoms that RWLocks are used where a more simple
lock could be used instead.

• qlock.c:85,90

writer is a counter for the number of writers. Perhaps it should have been
named writers, but there is only one writer allowed at a time, hence the name.
So, if there is no writer, and there is no process waiting for the lock, the lock is
acquired. When there is no writer, but there are processes waiting for the lock,
that processes would be writers waiting to acquire the lock. In this case, it is
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important to queue and give priority to the writers who arrived before. Other-
wise, a continuous flow of readers might starve a writer. readers is incremented
to reflect that there is one more reader holding this lock. There is no “locked”
field in the RWlock; if there are readers or writers, the lock may be locked or
not depending on who you are and who is holding the lock.

• qlock.c:92

One more reader had to wait, let the author know.

• qlock.c:93,102

The process (and there must be one) is queued in the list of processes queueing
at the lock. The queue is maintained using the qnext field of the Proc structure.

• qlock.c:103,105

The process state shows that the queued process is queueing for reading. As
with QLocks, the process will not run until dequeued from the lock queue and
placed back in a ready queue.

runlock() Releases a R/W lock for reading.

• qlock.c:109

Readers use runlock to release a RWlock for a reader.

• qlock.c:115

If there are more readers holding the lock besides the one releasing the lock,
nothing else has to be done: the lock is still held by remaining readers. Besides,
if there is no process waiting to acquire the lock, there is nothing more to do
because by updating readers, the lock is released when readers gets down to
zero.

• qlock.c:120,122

The last reader went away and there are processes waiting. The first process
waiting in the queue must be a writer—note that should it have been a reader,
it would have entered acquiring the lock, because there was no writer waiting by
that time. There can be readers in the queue too, but they are queued because
they saw there was another process queued (and a writer was among them) and
decided not to pass it. The process state is checked to see whether the queued
process is waiting for read or for write—see figure 4.7.

• qlock.c:123,128

As the last reader is gone, awake the writer by removing it from the queue and
setting it ready. The writer counter is set to one to reflect that one writer
holds the lock. That would prevent further readers/writers to acquire the lock.
Now that p is ready, the scheduler can elect it for running.

wlock() Acquires a R/W lock for writing.

• qlock.c:132

Writers use wlock to acquire the RWlock for writing.
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RunningReady Ready Ready QueueingW QueueingR

Ready queues

RWlock

Process table

rnext rnext rnext

qnext qnext

Figure 4.7: Queueing locks. The process is just removed from the ready queue while
waiting to acquire the lock. In this case, the lock is a read/write lock and the process
state is used to see what the process is waiting for.

• qlock.c:138,145

If there are no readers and there are no writers (no writer, actually) the lock
can be acquired. The PC that called wlock and the process that acquired the
lock are noted, for debugging. For readers, the author thought it was not worth
to record that information, probably because there are multiple readers.

• qlock.c:148,158

The process must wait until either the last reader releases the lock, or the
current writer releases the lock. The process state is updated to reflect “waiting
to acquire a RWlock” for writing, and the scheduler is called. The process won’t
run again until dequeued by either the last reader or by the writer. Even if the
lock is held by readers, further rlocks will have to wait.

wunlock() Releases a R/W lock for writing.

• qlock.c:165

Writers releasing the lock call wunlock.

• qlock.c:169,175

If there is no process waiting, the lock is released by setting writer to zero.

• qlock.c:176,184

If the first process waiting is a writer, it is given the lock (note that writer is
kept set to 1). The writer is allowed to run by removing it from the lock queue
and setting it ready.

• qlock.c:186,187

The process must be one waiting to acquire the lock for reading. Otherwise,
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some bug caused other process to enter the queue, or some bug caused the
waiting process to change its state.

• qlock.c:189,197

The first process waiting is a reader, but as the lock is going to be acquired
by a reader, any other reader waiting can acquire the lock at the same time
too. The author scans the queue seeking for processes queueing for read. All of
them are removed from the queue and set ready. readers is updated to reflect
that the lock is held by that many readers. The scanning stops as soon as a
writer process is found, because remaining readers should yield to the writer
who arrived before.

• qlock.c:198,199

It did not harm that writer was set until now, because the tas lock was held.
But better update it now.

canrlock() Tries to acquire a R/W lock for reading.

• qlock.c:202,216

canrlock is used as canlock, but for a RWlock locked for reading. Perhaps
a canwlock could be added for completeness, although no one is using such a
thing now.

One comment before proceeding. When a process is being awakened to acquire
the lock, you saw how the author does the bookkeeping for the awakened process
(updating counters et al.) in the process holding the tas lock. You will also see that
when author implements note posting and notifying, whatever can be done easily
within the notifying process is not done by the notified process. This is a general
rule that when you hold a lock and some bookkeeping has to be done for the process
being awakened, you better do it in the awakening process before releasing the lock.
Otherwise, the awakened one would have necessarily to acquire the lock for the re-
source and that could lead to more race conditions. Keep the code simple. Of course
there is a counterpart rule that if you can do something more easily in the process
awaken than it can be done in the awakening process, you should do it where it is
more simple. Keep the code simple, did I say that?

4.7 Synchronization

There are several forms of synchronization in Plan 9. User processes, to synchronize,
can use rendezvous(2).

Besides, the OCHEXCL bit for permissions given to the create(2) system call, allow
processes to synchronize on their access to files: only a process may have the file open
at a time. This simple mechanism avoids the need for complex file locking primitives
found on other systems like UNIX. This is very important since there is distributed
access to files (noticed the nfslockd process on your UNIX box?).

Moreover, the CHAPPEND permission bit, together with the guarantee that small
writes are likely to be serviced atomically by the file server, can be used together to
add new data to a file without race conditions.
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While in the kernel, processes sleep waiting for an event and wakeup other pro-
cesses, as you saw while discussing timers; and of course, you have the various lock
primitives discussed before.

In this section you are going to read the code for redezvous, sleep, and wakeup.

4.7.1 Rendezvous

See rendezvous(2) before continuing.

sysrendezvous() rendezvous system call.

• ../port/sysproc.c:696

sysrendezvous is called with two arguments

• sysproc.c:702

tag is arg[0] and val is arg[1].

• portdat.h:407,411

A Rgrp (rendezvous group) is a hash table with RENDHASH entries.

• sysproc.c:703

REND is defined in portat.h:393 to use the hash function to locate the entry in
the table. The author just applies the modulus to the tag, that seems to be a
good enough hash function for the case. l is our entry in the hash table.

• sysproc.c:706

The list in the hash bucket is searched for a process with the same tag. You
see how Procs doing rendezvous are linked into the Rgrp hash table using the
rendhash field as the “next” pointer. The code is clear, but perhaps names like
“rqnext”, “rendnext”, etc. would make it more clear.

• sysproc.c:707

One process called rendezvous with tag!

• sysproc.c:708,710

It is removed from the list. The value the first process gave to rendezvous will
be the value returned to the 2nd process calling rendezvous for the same tag.
The val supplied by this 2nd process, is passed to rendval for the first process.

• sysproc.c:712,713

Waiting until the first caller of rendezvous stops running (may be at a different
processor). This is busy waiting, because the author thinks it would be a waste
to sleep until the first process stops, and wakeup later. On uniprocessors, the
process will never be running.

• sysproc.c:714,716

Now that the first caller of rendezvous is not running, we can mess it up.
Remember, the first caller did call rendezvous. If it was running, it was about
to stop, waiting for a second process calling rendezvous—Agree now that it
would be a waste to sleep? As the first caller is now sleeping waiting for us;
make it ready again. It will pickup rendval as the return value—It was sleeping
also in sysrendezvous.
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• sysproc.c:722,725

This is the starting point for the first caller of sysrendezvous with a given tag.
Record the tag and the value so the 2nd caller notices; and link the process in
the Rgrp hash.

• sysproc.c:726

The process calling rendezvous was running; hence it was not in the scheduler
ready queue. Set the state to Rendezvous to reflect that it is no longer Running;
later it will be moved to Ready as you saw before.

• sysproc.c:729,731

sched yields the processor. Other processes will run. The current one will not
because it is not linked in a ready queue. When the 2nd caller calls ready

for us, this process will eventually be running, and continue by returning from
sysrendezvous with the 2nd caller’s value.

One thing to note: rgrp is unlocked before returning or scheding. After sched,
no lock is necessary to complete the rendezvous.

This is a common scheme that you already saw several times: a process is moved
out of the ready queue, it runs and blocks due to some reason; so it gets linked into
the structure representing the reason. Later, the structure will be scanned and the
process moved back to a ready queue.

4.7.2 Sleep and wakeup

sleep() Waits for something.

• proc.c:403,452

Sleep and wakeup are complicated, as the plenty of comments suggest. The call
sleep(r,f,arg) puts a process to sleep on r due to a reason represented by
(*f)(arg). wakeup(r) wakes up a process on r. If wakeup is called, the reason
for sleeping no longer holds. There are several problems though.

– A process may call sleep, and in the mean time, right after starting to
call sleep, another process can call wakeup for him.

– Right after calling sleep, the condition may change and we may change
our mind and don’t sleep. Therefore, wakeup can be called for a process
that is no longer sleeping.

– While a process is sleeping, it can be posted a note with postnote. That
may even make the process die. So once more, wakeup can be called for a
non-sleeping process.

Read this comment at lines :403,452, and think about it. Perhaps the only
way to make things more simple would be to change the semantics of sleep

and wakeup.

By the way, the Rendez parameter of sleep and wakeup may be called so
because it is used to rendezvous the processes calling sleep and wakeup; but it
has nothing to do with rendezvous(2).
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• proc.c:458,460

Without interrupts and locking rlock.

• proc.c:466,473

Important action, see the comment.

• proc.c:475,481

The condition changed while calling sleep; no need to sleep any more. Note
how r->p is set to nil, so wakeup knows there is nobody sleeping there.

Can you understand now why tfn (proc.c:518,522) is given as an argument
to sleep at line :567? Beware that tfn is not up->tfn!

• proc.c:487,488

No longer Running, Wakeme is the state for sleeping processes. Besides, the
process is sleeping on r. Any postnote will notice the state and update p->r

to be nil; so that a later wakeup notices that there is no process to wake up.

• proc.c:490,506

Doing the work of sched, instead of calling it. Why?

• proc.c:509,513

A note was posted, report the abortion of the sleep.

wakeup() Wakes up a sleeping process.

• proc.c:576

wakeup will wake up the process sleeping on r, if still there.

• proc.c:582,585

Important action, see the comment.

• proc.c:589,590

The sleeper was gone. No locks by now!

• proc.c:592,593

Now getting the lock

• proc.c:595

The process could go away between line :588 and this line. So check that r->p
is still there and is the p we know. Both checks are necessary since a different
process could sleep on r between both lines.

• proc.c:596,601

The process is awaken and placed back in the ready queue. The return value is
true if a process was awaken.

• proc.c:604,607

One way or another, we are done.

postnote is discussed together with notes in the next section.
There is a routine used to put the process to sleep for a while, awaiting for a

resource.
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resrcwait() Waits for some time due to a reason.

• pgrp.c:261,277

resrcwait uses tsleep to wait for a resource. It sets the “ps” state to let
the user know what is the process waiting for, and sleeps for 300 ms. return0

(a procedure returning zero) is used so that when sleep checks the condition
function, it returns zero and sleep puts the process to sleep. rescrcwait

seems to be used just to await for free slots in the process table.

4.8 Notes

Users make system calls to notify and noted to handle notes. See notify(2). Notes
are posted by writing to a note file or by the system; see proc(3).

The desing of Plan 9 notes is nice is that it services several needs: the kernel can
use it to notify of exceptional conditions to the user process, and the proc(3) files
can be used by user code to notify anything even through the network. Other systems
(e.g. UNIX) do not have a means to asynchronously notifying to processes over the
network (e.g. you must use either sockets or signals for that, and signals do not work
across the network!).

4.8.1 Posting notes

sysnotify() Sets up the process handler for notes.

• sysproc.c:572,578

sysnotify registers the handler for notes in the field notify for the current
process. The address is checked to be valid because the user could lie—if the
address is zero, the handler is being canceled.

• sysproc.c:580,586

sysnoted simply does nothing. Why? the noted system call has nothing to do,
the work is done in trap.c.

Let’s start by posting a note to a process.

syswrite

procwrite() Handles writes for proc(3).

• devproc.c:720

A write to /proc/n/note leads to a call to procwrite with Qid Qnote. Re-
member the section on files in the previous chapter?

• devproc.c:721,724

It is an error to post a note for a kernel process. It is an error to post a note
message longer than ERRLEN characters.

• devproc.c:727

Here is where the note is posted. postnote does the work. If you grep for
postnote, the kernel calls it in several other places, where it feels that the
system must post a note to notify something.
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• devproc.c:677,679

There is another way for the user to post a note, send it to a group of processes.
If the file written is notepg, pgrpnote posts the note. . . notepg()Sends a note

to a group of processes.

• pgrp.c:12,40

. . . by scanning the whole process table searching for not-dead processes with
the same noteid. In the end, postnote is called to post notes; kernel processes
are not notified. The author scans the table without locking the processes, and
when he thinks he got a process, a lock is acquired and the check repeated—now
without races. This pattern is used in several other places as you will see. Any
error in postnote is ignored.

syswrite

...

postnote() Posts a note to a process.

• proc.c:611

The note is n, the process notified is p, not the current process. postnote must
lock debug in the Proc affected, but will do so only if dolock—i.e. some caller
of postnote does not hold the lock.

• proc.c:623,624

flag is NUser if postnote is called by devproc—the user wrote the note file.
nnote is the number of notes posted (but not yet notified) for the process. So, if
the kernel posts the note and there is no handler or p->notified, the number
of notes is set to zero. notified is true while the process is being notified.
Rationale: if there is no handler, there is no point in keeping previous notes so
set the number to zero; if the process is being notified, and the note comes from
the kernel, forget about pending notes after then one being notified, because
the kernel one is likely to be important. Only when there is a handler and a
pending note, nnote is preserved so that the previously posted note is kept for
the user before the one posted by the kernel.

• proc.c:626,631

The note array holds the at most NNOTE notes posted to the process. If there
is space, nnote is adjusted and the note copied (posted) to the slot in the
array. Both msg (the note text) and flag (the note flag) are kept in the array.
postnote returns true if the note was posted.

• proc.c:632

There is a note for the process, let it know.

• proc.c:636,645

Race against sleep/wakeup. Get the lock and look at p->r. If non-nil, the
process is sleeping. Note the “paranoid” check to ensure that the race did not
mess things up. Locking for these three routines is so complex that security
must go first. The process is pulled out of the sleep and made Ready again. A
later wakeup would notice that r->p is zero and do nothing.
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• proc.c:649,650

Unless the process is doing a rendezvous, the post is done. The process will
notice the post and handle things itself.

• proc.c:653,664

Besides sleeping, the other reason a process may be waiting is on a rendezvous.
Both sleep and rendezvous may be interrupted due to a note. If the state
is Rendezvous (note the double check once the lock is gained!) the value
to be returned is set to the representation of -1 in two’s complement (see
rendezvous(2)). The process is then removed from the Rgrp hash queue and set
Ready. Compare this code with the code in sysproc.c:708,715. In postnote,
there is no need to wait until the process stops running (if it was so).

Now that the note is posted, and the notified process is ready, it will run sooner
or later.

4.8.2 Notifying notes

Imagine the just notified process starts running.

• proc.c:475

If the process was in sleep, or enters sleep, notepending is seen, and the
ongoing system call is aborted at line :512. The notepending flag is reset (now
the process knows it has notes), but nnote is still non-zero as there are notes
in the process’ note array. Something similar happens to processes with notes
posted while doing a rendezvous.

• ../pc/trap.c:532,538

In any case, when the notified process runs again, it will be inside the kernel,
probably in sched or aborting a sleeping system call. One way or another, as
procedures return, the process will reach trap (or the last lines of syscall).
Ignore lines :532,533 by now. Right now, the process is as depicted in fig-
ure 4.8(a).

If not doing a fork, and the process has notes posted (nnote not zero), notify
is called. The notified process was returning from an interrupt or a system call
when notify gets called.

trap

notify() Notifies of a note for this process.

• trap.c:546

notify is the routine actually receiving the posted note. It will take appropriate
actions depending on the note. You should note how the notified process handles
the note itself. That is more simple than doing it in the notifying process because
we are now running in the notified process context (e.g. user stack addresses
can be used safely).

• trap.c:552,555

Remember the check for procctl in trap? notify is taking care of “procctl”
here—I defer the discussion of this until later in this chapter. If the process was
posted a note, we pass these lines.



4.8. NOTES 145

notifyUreg

trap

Kernel stack for
this process

User text

UPC0
USP0

UPC0
USP0

User stack

Proc

note[]

note msg

(a) The process right before being notified.

notifyUreg

trap

Kernel stack for
this process

User text

USP0

User stack

Proc

Ureg
UPC0
USP0

UPC1
USP1

UPC0 UPC1

ureg

old ptr.

note[]

note msg

0ret PC
void*
char *

USP1

(b) The process after notify has setup the user
stack for the handler. The next iret will make
the handler run.

Figure 4.8: Notes are handled by the notified process. notify sets up the context for
the handler. The previous state is recorded in the user stack.

• trap.c:557,558

You know that debug is the lock to acquire when posting notes.

• trap.c:559

The note is being handled, no longer pending.

• trap.c:560

First, pick up the first note. If there more ones, they will be handled after the
process has been notified of the current note (i.e. when the process enters the
kernel again and starts to leave it in trap).

• trap.c:561,566

If the note starts with “sys:”, the kernel posted the note. Ensure that there is
room to add to the note the user program counter and add it to the note. If the
kernel posted the note, it is likely that the instruction pointed to by the user
PC, caused a trap that caused the postnote. Therefore, the value for the PC
is valuable to fix the bug.

• trap.c:568,574

If the note was not posted by the user, and there is no handler (notify is null)
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or the process is currently handling a note, the process is killed. pexit does the
job. This is reasonable since the handler is probably faulting and it makes no
sense to give it a second chance.

• trap.c:575,579

The process is handling a note right now, do nothing; The check could be done
at line :537, but notify would then have no chance to kill the process in case
something caused a kernel posted note. Think of a process using an illegal
instruction while running the handler for the note.

• trap.c:581,584

Default action for user posted notes when there is no handler: die.

• trap.c:585,586

Starting to setup the user stack to run the note handler (see figure 4.8(b)). We
know there is a handler. Here the author makes room for a copy of the saved
Ureg in the user stack. When the process is being notified, the note handler is
supplied with a copy of the saved Ureg; the handler can make changes in the
copied Ureg and the kernel will reflect those changes in the real saved Ureg.
That way, a user can repair the cause for a note by changing the noted process
context. Can you see that the kernel is using “user virtual addresses” directly?
That is feasible because the kernel now runs within the context (i.e. address
space) of the notified process. User virtual addresses can still be used from the
kernel, they must be checked though to ensure that they really exist and have
appropriate permissions.

• trap.c:588,593

The user could lie regarding the address of the handler or its stack. Ensure that
both the handler entry point and the place in the stack where handler arguments
are copied are valid addresses. If they are not, the process dies. The space for
the arguments must hold a copy of Ureg, plus room for an error message of at
most ERRLEN characters, plus 4 machine words. See later.

• trap.c:595,597

up->ureg is set pointing to the copy of the saved Ureg in the user stack. This
is the copy for the user, and not the real Ureg (which is the parameter ureg).
The real Ureg is copied into the user stack and a pointer to the just copied Ureg

pushed on the user stack.

• trap.c:598

What? did this before. Perhaps line :595 should be deleted? Looks like the
old up->ureg should be saved in the user stack before being updated to point
to the current User’s copy of Ureg. Note the comment.

• trap.c:599,600

Make room in the stack for the just pushed Ureg* and the note message; copy
the note message.

• trap.c:601,604

Add room for three words: the return program counter, the pointer the the
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copied Ureg, and the pointer to the note message in the user stack; and initialize
them accordingly. Why is the return PC being set to zero?

• trap.c:605,606

The real (note: ureg and not up->ureg) saved user stack pointer set to the
new value for the handler. The real saved user PC set to the address of the
handler (kept in notify). After trap returns leading to a return from interrupt,
the reloaded process context would make it run the handler as if it had been
called. The arguments are as they should be, but the return PC for the handler
is zero! A return will cause a page fault (because address zero is not valid) and
the process will surely die—because the system would post a note during the
execution of the handler. But you know that a note handler must not return,
you read noted(2), right?

• trap.c:607,610

One the note is notified, shift remaining notes (if any) to remove the first one.
lastnote keeps a copy of the note just notified—used for debugging and while
returning from the handler. Besides notified is set to record that the handler
is running.

4.8.3 Terminating the handler

Assume now that the process note handler behaves correctly, and it calls noted(2)

before returning from the handler.

syscall

sysnoted() Does nothing. The system call is just to enter the kernel.

• ../port/sysproc.c:581,586

When syscall calls sysnoted (the system call for noted(2)) it does nothing
(Although I think that the code in noted discussed below could be moved to
sysnoted).

• ../pc/trap.c:532,533

The system call number is NOTED, and noted is called. The Ureg given corre-
sponds to the context for the user within the user library noted function, right
before the handler terminates. The second argument is a pointer to the argu-
ments of noted(2), which are just an integer (the return PC for noted is in the
top of the user stack). Figure 4.9(a) shows how the stacks look like.

syscall

noted() Handles a posted note.

• trap.c:621

noted must restore the user context as it was before the note was notified.

• trap.c:627,631

If notified not set, and the argument to noted is not NRSTR, abort. Read
the noted(2) manual page if you have not done so. notified should be true,
because noted is being used to return from a handler to the previous context, but
looks like noted(NRSTR) can be used even when there seems to be no handler.
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Figure 4.9: Returning from a note handler and restoring the user context.

• trap.c:632

The handler is no longer running. See how notified is used to report that the
user context corresponds to a note handler?

• trap.c:634,637

nureg and oureg set to the handler copy of the Ureg saved before the process
was notified.

• trap.c:638,642

The copied Ureg* and Ureg must be valid addresses. Kill the process otherwise.

• trap.c:651,660

Can we trust that the copied Ureg is reasonable? The user could try to mess
up with segment selectors in the copied Ureg and the kernel could crash or
compromise security if the user was trusted. The same can happen to bits in
the flag word that enable/disable interrupts and affect system issues; however,
other bits in the flag word can be changed.

• trap.c:662

This is it!, now that we trust the handler Ureg, copy it back to the currently
saved Ureg. After noted returns, the return from interrupt will reload the
(fixed) process context. Usually, the user PC and SP in the fixed Ureg would
be those corresponding to the user context before the process was notified (as
shown in figure 4.9(b)).
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• trap.c:664

The argument to noted specifies what to do next.

• trap.c:665,674

Be it NCONT or NRSTR, the pointer to current copy of Ureg for note handlers is
set to its old value. (But remember line :595! A bug there?).

• trap.c:676,690

NSAVE arranges for the user stack to be almost preserved as it stands (see fig-
ure 4.9(c)). The user stack is set above the old Ureg, leaving place for three
parameters and a fake return PC; a pointer to the oureg is set as the first pa-
rameter. But, parameters for who? If you ask this, did you read noted(2)?.
The note handler calling noted has adjusted the PC in its copy of the Ureg so
that a different routine is called when it returns; the NSAVE is set for noted to
let it know that it should keep a handler stack frame for the routine. Using this
“trick”, the user can chain handlers for notes.

• trap.c:691,695

None of the known flags, let the user know and continue as if NDFLT was said.

• trap.c:696,702

The process did not say NCONT to let the process continue, and did not say NSAVE

to chain another handler. The reason for the note is not likely to be repaired
and the process must die.

When noted returns, the saved Ureg is reloaded (including any fix from the
note handler), and the process resumes operation.

By the way, most of the blocks with qunlock, pprint, and pexit used to handle
errors could be folded into a common error handling block by using a goto like other
kernel routines do; and perhaps the arithmetic done with the user stack pointer could
be simplified a bit.

4.9 Rfork

Now it’s time to see how are processes created and destroyed. The system call used
to create a process is rfork. Read the rfork(2) manual page.

Plan 9 follows UNIX (as with many other things) in that processes are arranged
into a hierarchy. The system creates an initial process, and remaining ones are created
using rfork as descendant of the first one.

Using a hierarchy of processes is good in that provides a natural means to share
resources, by setting them up in the parent before spawning any child. Unlike UNIX,
Plan 9 is able to adjust the resources a process has, including its name space, so that
any process can get a brand new instance of the resource, or a clone of the resource.
But you already read this in the manual page, right?

Although the proc(3) device permits handling of processes using files (over the
network), typical operations of process creation and program execution are performed
by regular system calls on the local node. Moreover, processes can only share resources
(namespace, descriptors, etc.) within a node. This is not a severe problem, because
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name spaces can be constructed to use the same resources (files) over the network.
The approach chosen by the author is simple, yet effective.

sysrfork() Entry point for rfork. Creates new processes or adjusts the current process

resources.

• ../port/sysproc.c:20

sysrfork is the entry point for the rfork system call. It is called from syscall

in ../pc/trap.c.

• sysproc.c:31

The flag supplied to rfork is very important, because it controls what rfork

will do. It is made of an OR of bits, stating that particular resources for the
process should be (re)created, duplicated, or shared.

• sysproc.c:32,38

The user cannot request that file descriptor group be both copied (RFFDG) and
and cleaned (RFCFDG). The same for the name space and the environment. Flag
names are not so hard to remember: they all start with RF (for RFork). Now,
take the file descriptor group (FDG) as an example: to share it, say nothing; to
duplicate it, say RF and FDG, i.e. DFFDG; to clean it, put a C before the flag
name, i.e. RF and C and FDG, that is RFCFDG. Calls to error will jump to the
label set by the last call to waserror—at ../pc/trap.c:496.

• sysproc.c:40

Important!, if RFPROC is said, the system must create a new process and use
remaining flags to set up its resources. If RFPROC is not said, changes affect the
current process. The set of flags for rfork is a kind of micro-language, used
both to adjust resources in the current process and to control the initialization
of resources for the new process. Lines :41,78 are executed when rfork is
adjusting resources for the current process.

• sysproc.c:41,42

RFMEM requests data and bss segments to be shared between the parent and the
child, but there is no child. RFNOWAIT request the child to be “independent” of
the parent—more about this later. As there is no new process, these flags have
no sense.

• sysproc.c:43

the fgrp has to be either copied or cleared. It makes sense to copy the fgrp

even when there is no new process. The fgrp may be shared among the current
and other processes, the current process is probably going to adjust its fgrp

and does not want to disturb the other processes. By calling rfork with RFFDG

set, the process can “clone” the fgrp and get its own copy.

• sysproc.c:44,48

up->fgrp set to either a duplicate of up->fgrp, or to a duplicate of nil—i.e. to
a fresh new one. You already saw in the last chapter how dupfgrp works when
creating a new group.

dupfgrp()Duplicates an Fgrp.



4.9. RFORK 151

• pgrp.c:185,208

When the fgrp is not being created, but being cloned from an existing one,
these lines execute. Lines :187,190 get the number of used entries in the
cloned group—and round that number to a multiple of DELTAFD entries. Later,
memory for the array is allocated, the reference count set to one and the array
initialized from the cloned one. incref(c) adds an extra reference to each
channel in the cloned group. The author ensures that the fgrp appears to grow
in chunks of DELTAFD entries, no matter if that was really the case or not: he
sticks to his design.

closefgrp()Releases a reference to a Fgrp.

• sysproc.c:49

The process got a new fgrp, so the old one is no longer referenced by the process.
closefgrp releases the reference to the previous up->fgrp; if the reference count
gets down to zero (no other process using this fgrp), all file descriptors in the
fgrp are closed and the fgrp deallocated.

• sysproc.c:51,59

The name space adjusted. pgrp is actually the name space group. First, a
new pgrp is created (an empty mount table for the process). If the pgrp is to
be copied, pgrpcpy duplicates in up->pgrp the old name space. There is no
duppgrp routine (although a simple wrapper for pgrpcpy could be created to
make the code look like the one for fgrp). The noattach flag prevents mount

and attach from being used on the name space. The old pgrp value is set for
the new name space. Otherwise, a process could bypass the noattach flag by
duplicating the name space. I think that a duppgrp routine could take care of
this detail too. Finally, the reference to the old name space group is released.

• sysproc.c:60,61

If RFNOMNTwas set, forbid mounts and attachments on the name space by setting
the flag.

• sysproc.c:62,66

Start a new rendezvous group for the process. That is used to avoid clashes
in the rendezvous tag namespace, and to prevent some processes to rendezvous
with others. A new rgrp is created and the reference to the one dropped.

• sysproc.c:67,74

Environment group adjusted. Again, I miss the existence of a newegrp and/or
dupegrp routine—But that’s just a naming issue mostly. The creation of a new
egrp is done by allocating it and setting the reference counter to one. If the
environment is to be copied, envcpy will recreate in up->egrp the variables
found in the old environment.

• sysproc.c:75,76

Create a new note group for the process. Similar to what was done for ren-
dezvous, but more simple. Remember that the whole process list is scanned to
determine who belongs to a process group when posting notes? To create a new
note group it suffices to get a new noteid value.
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• sysproc.c:80

The previous lines were executed only when resources for the current process
should be adjusted. Did not return at line :77, so the caller wants a new process.
Allocate it at this line. If you remember from the previous chapter, newproc
allocates a free Proc entry and initializes it with everything set to null but for
the kernel stack, the process pid and the process noteid. The process state, the
“ps” state, and the FPU state are set to initial values too.

• sysproc.c:82,84

The newly created process has the same FPU saved state, and appears to be
executing the same system call (number and arguments).

• sysproc.c:85

No errors for the new process.

• sysproc.c:86,88

The new process uses the same root directory and the same current directory.
rfork usually duplicates the calling process unless told otherwise. Now there is
another reference for dot.

An incref on slash seems to be missing. I think that the author considered
it unnecessary because all processes have the same value for slash (boot gets
one pointing to the root device and rfork makes the child have the parent’s
slash), the slash channel will never be released. Nevertheless, I think it would
be better to incref/decref it.

• sysproc.c:90,96

The set of notes for the current process is duplicated for the new one. dbgreg

points to the saved Ureg after traps, none by now. Also, there is no note handler
running for the new process, set notified to 0.

• sysproc.c:98,104

Going to work with segments, so gain the lock seglock and prepare to release
it if there is an error. waserror is used to jump back to it on an error, re-
lease the lock, and re-raise the error to the waserror in syscall (trap.c).
dupseg()Clones or shares a segment.

• sysproc.c:105,107

For all segments, call dupseg to duplicate the ith segment in the seg array.
The n lets dupseg know that the segment should be duplicated and not shared
or cleared. I’ll get back to dupseg on when talking about virtual memory on
chapter 6. The only things you should know by now is that:

– dupseg returns the segment given incrementing its reference counter for
TEXT, PHYSICAL, and SHARED segments. You see how text segments (read
only) and physical memory segments are shared between the parent and
the child no matter what rfork is told.

– dupseg creates a fresh new stack segment and returns it, when the segment
given is a stack. The base address and size for the new stack are the same
as in the passed segment.
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Figure 4.10: Virtual memory layout for a forked process. The layout of physical
memory is not really like the one shown; besides, Plan 9 uses paging, and does not
map whole segments.

– for DATA and BSS segments, dupsep will add a new reference and return the
segment given (i.e. share it) or it will create a copy of the given segment,
depending on the share flag (n).

So, after the calls to dupseg, the new process has its seg array setup either
sharing the parent’s segments or with a copy of parent’s segments. Of course,
text segments are always shared with the parent and the child always gets a
fresh new stack. Apart from that, everything else in virtual memory looks like
the parent’s memory; see figure 4.10.

• sysproc.c:108,109

Lock released and the last error label removed. A call to error to notify an
error will jump now to the waserror at syscall: there is no cleanup to be done
here now and the direct jump to syscall can be permitted upon errors.

• sysproc.c:111,155

File descriptor group, name space, rendezvous group, and environment group
are either duplicated from the parent for the new process, or created, or shared.
It all is the same that was done by rfork to adjust resources for the current
process when no RFPROC flag was given (The main difference is that resources
are shared when they are neither cleared nor cloned). Perhaps some code could
be shared and rfork made shorter; nevertheless the code is simple and easy to
follow.

• sysproc.c:156

hang is a flag stating that the process should stop when doing an exec to give
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the user a chance to debug it. The child gets the same flag than the parent.
As creating new processes is usually an rfork plus an exec, it makes sense to
propagate the flag.

• sysproc.c:157

“permissions” for the file representing the new process are the same they were
in the parent.

• sysproc.c:159,162

Read the comment! When you do an rfork requesting the creation of a new
process, the parent is given the pid of the child, and the child appears to return
from rfork just like the parent, but returns zero instead. forkchild sets things
up in the child so that it would appear to be returning from rfork with a return
value of zero. Note that trap (../pc/trap.c:227,230) did set dbgreg to point
to the Ureg saved by the hardware when rfork was called.

sysrfork

forkchild() Handcrafts the child kernel stack.

• ../pc/trap.c:772

forkchild has to be machine dependent because it assumes the stack layout
for the current architecture.

• trap.c:777,782

When the scheduler jumps to the new process, it will jump to the sched label
in p. The author initializes the label so that the kernel code executing is not
sched (which usually sets the label when the process is leaving the processor),
but the first instruction of forkret. forkret will then return from the rfork

system call in the child as if it had called rfork. The kernel stack pointer is
set to the end of the kernel stack for the new process, but leaving room for a
copy of an Ureg structure and two extra words. The two extra words are the
return PC and the argument (the Ureg*) of the syscall routine. Yes, for the
syscall routine and not for the forkret routine. More later.

• trap.c:784

cureg points two words after the top of the kernel stack for the new process,
that is where an Ureg is going to be copied.

• trap.c:785

Important!, the ureg passed to forkchild is copied into the kernel stack for
the new process. That Ureg was the one saved by the hardware when the user
called rfork. Therefore, forkret has its own copy of that processor context.

• trap.c:787

This is where rfork is forced to return zero at the child. The return value will
be taken from the return-value register, which is ax. ax is set to zero in the
Ureg copied for the child process. The whole picture can be seen in figure 4.11.

• trap.c:791

insyscall is set and reset by syscall upon starting/terminating a system call.
Reset it for the child since it is completing its “call to syscall”.
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sysrfork

• sysproc.c:164,165

The parent of the child is the current process.

• sysproc.c:166,172

If RFNOWAIT was set, the parent will not call wait(2) for the child, so make
the parent pid be the pid for the initial process. Every process likes to have a
parent who cares for it! That process will wait for the child. More about wait
in a following section. If it was not set, increment the number of children for
the parent.

• sysproc.c:173,174

No request to start a new note group, so keep the parent’s. Remember that
newproc did set noteid to be a new group.

• sysproc.c:176,181

Initialize the state of the FPU, zero the time counters, and record at time[TReal]
the starting time for the new process. By subtracting that value from ticks at
processor 0, the system can know how much (real) time passed since the process
was born. Names for the text file (binary file) and the user named duplicated.

• sysproc.c:183,187

The comment says it all. The reason is that when a segment gets shared,
permissions on the page table for the memory affected can change too. Therefore
the MMU has to be flushed to drop the old permissions from cached page table
entries. This will become clear in a following chapter.

• sysproc.c:188,189

Priority (both base and actual) inherited from the parent.

• sysproc.c:190

The child appears to have run at the same processor the parent was running at.
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• sysproc.c:191,193

If the parent is wired to a processor, the child gets wired to that processor too.
procwired wires the process as you saw before.

• sysproc.c:194,195

All set. The child gets linked into the ready queue and set Ready. When the
scheduler is called, it could elect the child.

• sysproc.c:196

When the current process gets back to the processor after sched runs other
processes, the pid of the child is returned as the result of the system call.

That was okay for the parent, but what does the child now?

forkret Appears to return from syscall.

• ../pc/l.s:539

When the scheduler picks up the child for running, it jumps to the sched label
for the process and forkret starts running. forkret does exactly what is done
after syscall returns from the call at plan9l.s:43. The only difference is
that syscall was never called by the current process. The stack was set by
forkchild as if syscall was called, so that forkret could believe in that.

One thing to see here is that forkret is actually assuming that the process re-
turns from trap and not from syscall; but the code in forkret and plan9l.s:45,52

is exactly the same, which means that it would work anyway. Perhaps it would
be better to move the forkret declaration from l.s to plan9l.s:44, since it
is returning via syscall and not via trap.

• l.s:540

throw away the fake Ureg* argument in the stack.

• l.s:541,545

Reload the processor registers and segments from the Ureg saved in the child
kernel stack by forkchild.

• l.s:546

ignore the couple of words in the Ureg above the hardware saved processor
context in the stack.

• l.s:547

Here we go! The iret reloads the processor PC, SP and their segments so that
the process continues back in user-level returning from the rfork system call.
The ax register restored at line :541 was set to zero by forkchild, therefore,
rfork returns zero to the child.

• ../pc/trap.c:535,538

To complete the discussion of rfork, here is my guess about the reason for the
scallnr!=RFORK in trap.

Suppose that the child was setup by forkchild to start running in trap and
not in forkret—probably by copying the kernel stack for the new process in
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this hypothetic previous version of the kernel source. If the system call was
rfork (and it was called by trap), a new process would be created and both
processes would return from the rfork system call back to trap.

If that would be the case, and the RFORK check was removed, both the parent
and the child would check for pending procctls and pendingnotes. Perhaps
the code used variables in the stack that could cause the child to be posted a
note that was really for the parent.

Regarding the actual code, the only utility I can see for this check is to avoid
posting a note to the child before giving it a chance to either install its own
note handler or issue an exec system call and be forbidden for parent’s faults.
In any case, the child has its notify field as the parent has it.

4.10 Exec

Now that you know how a new process is created, let’s see how it can execute a
new program. It needs to both locate the program to be executed and execute it.
The separation of concerns between rfork (creating a process) and exec (executing a
program) allows a parent to perform adjustments on the child process before executing
its program. This comes back from the days of UNIX.

An executable in Plan 9 is any file with the execute permission set. Unlike other
systems, the file name has nothing to do with the fact that it could be executed. The
file must be either a text file or an a.out file. A text file to be executed usually
starts with “#!” and the path of the program to interpret the file; for example, rc
scripts start with “#!/bin/rc”. a.out files are generated by the Plan 9 assembler
(see a.out(6)), and contain, among other things, the following items:

• An Exec header, with information about the image of the program (sizes for
segments, etc.).

• The executable code for the text segment.

• The image of the data segment with initialized variables.

4.10.1 Locating the program

sysexec() exec system call. Executes a new program.

• ../port/sysproc.c:209

A process willing to destroy its memory in favor of executing a brand new
program calls exec; this is the entry point for the system call.

• sysproc.c:226,227

The first argument is a file name, where the executable for the new program is to
be found. So, check that the address is valid, and get a pointer for it. Remember
that the user virtual addresses are valid, therefore, the pointer supplied by the
user is ok for kernel usage.

• sysproc.c:228

Ignore this by now. To satisfy your curiosity, indir seems to mean “indirection”.
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• sysproc.c:230,234

tc is the text channel, or the channel pointing to the text file for the new pro-
gram. namec resolves the name in the current name space and returns an open
channel checking for execute permission. The waserror prepares for closing the
channel and re-raising the error if the following code raises an error.

• sysproc.c:235,236

namec did set up->elem with the file name—without any previous path compo-
nent. So now elem contains the name for the text file. Again, ignore the indir

thing; just notice that it is zero now.

• sysproc.c:238,240

You know this, right? Using the channel type to call the appropriate read

routine to get the Exec header for the text file. At least two characters wanted.
Yes, the Exec header is more than two characters, but keep on reading. If the
error is raised, you get back to line :231, the channel is closed and the error
re-raised.

• sysproc.c:241,243

Extracting the magic number from the header, as well as the size of the text
segment and the entry point. The Exec header is defined at /sys/include/

a.out.h:2,12. read could get just two characters and all these fields could be
trash. The numbers just extracted are stored in big-endian order in the Exec

header, l2be is “little to big endian”, however, that transformation on a big
endian yields a little endian value; never mind, the fact is that l2be convert those
values to a little endian representation—shouldn’t be this a machine dependent
operation?

• sysproc.c:224,250

If the whole exec header was read and the magic number states that it is indeed
an a.out file, it can be executed. The break would break the loop used to
search for the text file, and execution would continue at line :275 were a.out

binaries are loaded. The error is raised in case the entry point is set before the
start of the text segment for the user plus the size of the Exec header, or in case
it is beyond the text segment (plus the size of the Exec header). The image
in memory will contain the Exec header and then the text segment, hence the
range—text images look very much like the file. Besides, the entry point should
be within the user portion of the virtual address space (not with the KZERO bit
set).

• sysproc.c:252,254

Not an a.out. It is a file interpreted by another program.

• sysproc.c:255

The exec header is copied into a character array.

• sysproc.c:256,257

If the line does not start with “#!”, it is not an script, so don’t know what kind
of binary it is. Ignore indir once more.

shargs()Builds arguments for shell scripts.
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• sysproc.c:258

shargs takes the line array, the number of characters kept at line, and builds
in progarg an argument vector for the program. If you read lines :441,469

you will see how that is done. Can you guess why the loop at :447,449? The
number of arguments filled up is kept in n upon shargs return.

• sysproc.c:261

indir is set when the file is to be interpreted by another program!

• sysproc.c:265,266

shargs filled up progarg according to what follows #!. Now, consider an rc
script named “/tmp/f” starting with “#!/bin/rc -e -s”, when the file gets
execed, /bin/rc should run with the command line /bin/rc -e -s /tmp/f.
shargs would have filled up progarg for the command line /bin/rc -e -s, but
it knows nothing about the final missing argument. These two lines at exec are
supplying as the final argument, the name of the file to be interpreted—note
that the argument vector must be null-terminated.

• sysproc.c:267,268

The first parameter in the argument array supplied as the second argument to
exec is no longer valid, so remove it from the argument array.

• sysproc.c:269,270

The file being executed is not the script, but its interpreter. The name of the
interpreter is at progarg[0]. Besides, the interpreter should believe that it is
named after the script name, not after the file containing the interpreter code.
The first parameter for the program executed is set as the script file name,
which was elem.

• sysproc.c:271,272

Now let’s get back to indir. You see how the channel for the script file is closed
(and the error label popped because we already closed the channel). The loop
will iterate once more with file set to the file being execed (the interpreter)
and indir set to one (at line :261).

Should the interpreter file on this new iteration be another “#!” file, the test
at line :256 would raise an error. The author does not want an interpreter
to be an interpreted file! That can appear to be a restriction but it is not—
interpreters are usually binary files, and if they are to be scripts, the can be
easily wrapped with a silly binary file that calls the script. Should the author
allow nested interpreters, a loop could arise because a malicious (or dumb) user
could setup two files to interpret themselves recursively; e.g. file /a starts with
#!/b and file /b starts with #!/a. It’s more simple to forbid nested interpreters
than it is to check for looks in the nested interpreter call. Besides, allowing
nested interpreters would require more complex code in exec. Despite that, the
author wrote sysexec in a way that makes it easier to allow it to handle nested
interpreters.

If the interpreter is a binary and not an interpreted file, the check for indir at
line :235 preserves elem as the script file name even though it is the interpreter
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the one being executed, and the break at line :249 would lead to the code
execing an a.out file.

4.10.2 Executing the program

sysexec

• sysproc.c:275,276

Starting to execute an a.out, be it an interpreter or not. Now extract the
lengths for the data and bss segments. The lengths for the text segment and
the entry point had to be extracted before to check for illegal entry points.

• sysproc.c:277

t is set to the end of the text segment. That is the first address of the segment
(UTZERO), plus the sizes for the Exec header, and text segment proper. The
+BY2PG-1 and &~(BY2PG-1) is rounding the computed value to a page boundary.
A page can be either text or data, but not both.

• sysproc.c:278

d set to the end of the data segment, computed by adding the size of the data
segment to the just computed (and rounded) end of the text segment.

• sysproc.c:279,280

The end of the BSS (b) computed the same way.

• sysproc.c:281,282

Don’t trust the exec header. The end of text, data and bss segments should not
invade the high part of the address space, used for the kernel. The error would
jump to line :231, where the channel is closed, and the error re-raised.

• sysproc.c:287

nbytes counts how many bytes are to be pushed in the user stack. You already
know that the bottom of the stack is used for a profiling clock. This “first pass”
counts the number of bytes to be pushed on the stack.

• sysproc.c:288

No arguments pushed yet.

• sysproc.c:289,296

If exec-ing with an indirection (i.e. an interpreter), the argument array is the
progarg computed by shargs. Count the bytes for the null-terminated strings
in progarg.

• sysproc.c:297

evenaddr seems to fix the passed parameter to start at an even address. Some
busses would raise an alignment error exception otherwise; but on the PC,
evenaddr does nothing.

• sysproc.c:298,307

Besides any argument counted in the case of an interpreter, the arguments
given as the second parameter to exec have to be accounted for too—note that
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for interpreters, the first parameter (the script name) was removed from the
argument array; that is to avoid counting it twice. The calls to validaddr are
ensuring that both argp and the strings kept there reside at valid user virtual
addresses. The call at line :299 checks the first word (the first page actually)
for argp; when the page offset for the argp address is less than then size of the
word, argp is jumping into the next page, so call validaddr once more to verify
that the next page is still in place. Calling validaddr every pass in the loop
would be a waste. The number of bytes to be pushed is incremented with the
length for each argument, as reported by vmemchr (plus one for the final zero).
vmemchr is like memchr, which returns the pointer to the first occurrence of a
character (0) in a string (a); unlike memchr, vmemchr checks that the memory
where the string resides is valid user virtual memory. By subtracting the start
of the array (a), its length is computed.

• sysproc.c:308

the size of the user stack is now known: One pointer per argument plus a null
terminator for argv; plus the actual size of the arguments, rounded to a multiple
of the word size.

• sysproc.c:310,315

The comment says it all. On Intels it can waste a bit of memory but who cares.
The author is still computing the size of the stack.

• sysproc.c:316

Count the number of pages needed for the initial stack.

• sysproc.c:321,322

Ensure the the user stack does not get too big. TSTKSIZ is the maximum allowed
size for the “temporary” user stack being setup now.

• sysproc.c:324,328

Going to operate on process’s segments, qlock it. Note the use of a QLock (long
waiting, maybe), and the use of waserror to release the lock in case of errors.

• sysproc.c:329

A new stack created. ESEG is an extra segment slot used for exec. Right know
exec could still fail, and you don’t want to loose your user-level stack yet.
This stack segment goes from TSTKTOP-USTKSIZE to TSTKTOP; noticed it is not
U STKTOP? The author does not want to mess up the current user stack because
exec can still fail, therefore, a temporary stack segment is created right below
the user stack. TSTKTOP (../pc/mem.h:54) is precisely USTKTOP-USTKSIZE.
Even though the stack is not at TSTKTOP, pointers pushed on it have values
assuming that it starts at USTKTOP. This stack is going to move to its proper
location, but later. By the way, I think that the comment that says “putting
it in kernel virtual” is a bit confusing, since the stack is being built at the user
portion of the virtual address space.

• sysproc.c:331,350

setup the stack arguments for the new process. Arguments are copied appropri-
ately including progarg when indir is one. You should understand the code.
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Remember that the pointers pushed (i.e. :346) assume that the stack is mapped
at USTKTOP, and not at TSTKTOP.

• sysproc.c:352

elem was kept with either the binary file name (indir not set) or the script
name (indir set); copy it as the name for the process text.

• sysproc.c:354,363

Old segments “released”. This is a point of no return. Only segments between
SSEG and BSEG are released. That includes the current user stack (which is
not shareable), text (which is being replaced by exec), data (which is being
replaced by exec) and BSS (also replaced by exec). putseg decrements the
reference counter for the segment and releases resources (memory, mostly) held
by the segment when the counter gets down to zero.

• sysproc.c:364,370

From the BSS on, only segments marked as “close on exec” are released. Re-
maining segments are kept. Shared segments created by the process would lie
between BSS and NSEG; so they would be kept shared between the parent and
the child. fdclose()Closes file descriptors with a matching flag.

• sysproc.c:375,377

File descriptors marked as “close con exec” on the fgrp for the new process are
released. fdclose closes all open file descriptors which happen to have set the
flag passed it. In this case, all open file descriptors marked as CCEXEC would be
closed.

• sysproc.c:379,383

tc is the channel to the text file, attachimage returns an Image corresponding
to that channel. The thing going on is caching. The Image structure, discussed
later in the virtual memory chapter, is responsible for caching images of text
files. If someone else is executing the program found at the file pointed to by
tc, the memory used to keep the text loaded will be shared because the Image

used would be the same. Don’t worry too much about this, just think that the
Image contains a segment (img->s) used as a cache for the program text. ts is
kept pointing to the text segment and seg[TSEG] is set accordingly.

The comment states that the image is “locked” when returned. That is because
the author is going to update the segment held by the Image. The text segment
may be shared by different processes and it would make no sense to acquire the
seglock on one of them to operate on the segment. Instead, the Image must
be locked to work on the text segment.

• sysproc.c:384,387

You will know when virtual memory be discussed. Just to record that all the
text should be “flushed” because it is now shared, and also to know where is
the text in the image.

• sysproc.c:389,398

A new data segment created and set in place. The Image for the data segment
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(the place where memory comes from) corresponds to the binary file where the
text was found, but starting after the text. You know that a.out files keep both
text and data.

• sysproc.c:399,400

The BSS segment created. The “zero-fill on demand” means that pages will
be brought in for the segment as needed, they will be filled to all zeros when
brought.

• sysproc.c:402,412

exec passed the point of no return, so there is no problem to relocate ESEG into
its place, SSEG, which is the proper location for the user stack. Now that the
seglock is released there is no need to jump back to line :325 on errors. The
base address and top of the stack is set, and relocateseg adjusts the segment
so it starts at USTKTOP, where it belongs. The movement is done by changing
the virtual memory address translations.

• sysproc.c:414,419

Read the comment, you already know about priorities. The “device character”
for the root device is “/”, so the kernel is checking that the file comes from the
root device. If that is the case, the priority is adjusted accordingly; otherwise
the process keeps the priority it had (probably inherited from the parent at
rfork).

• sysproc.c:420,421

Remove the error label first, so that if the close for the channel fails, exec would
not close it again.

• sysproc.c:428,433

No notes yet, and FPU state initialized.

• sysproc.c:434,435

If hang was set, honor it by by setting procctl to Proc_stopme, which means
that the process will be stopped for debugging before returning to user level.

• sysproc.c:437

Finally, execregs initializes the user stack pointer and program counter.

sysexec

execregs() Initializes user registers so the program starts in its entry point.

• ../pc/trap.c:706,719

execregs starts by setting up sp to the actual top of the user stack, with ssize

bytes on it. Then it pushes the number of arguments to complete the main
entry point arguments. As syscall did set dbgreg to point to the ureg saved
by the hardware, the only thing to be done is to update on it the user stack
pointer and the program counter. The return value for sysexec is the address
of the profiling clock, which might be used by the user-level library code, but
seems to be not relevant for the kernel. Remember that exec does not return
when successful, so the return value can be only of interest to the assembler
entry point for Plan 9 processes.
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By the way, in case you didn’t guess, the loop at lines sysproc.c:447,449 is to
ensure that the first line of the script fits within the size of an Exec header. Remember
that exec read the header and then copied it to line? If the line is longer than the
size of the header, exec would miss the trailing part of the line, so better fail. This
is a tradeoff for simplicity, as exec could perfectly keep on reading until a whole line
is read.

4.11 Dead processes

Processes can terminate existence in several ways. First a process can call exits to
terminate itself (see exits(2)). A message can be passed to exists, which will be
passed by the kernel to the parent process calling wait(2). Thus, the concept of
a process hierarchy also helps in controlling how processes went in their lives. The
parent calls wait and receives reports about its dead children; every child tells the
parent.

The message passed is more meaningful for humans than the UNIX error code,
and what is actually more important, is portable to different architectures! The
convention is that a null string means “ok”.

Another way to (almost) terminate is by faulting, either voluntarily (see abort(2))
or involuntarily. Faulted processes are kept hanging around for debugging in a Broken

state. That is better than saving a core file for several reasons: first, no more core
files hanging around in the file system; second, a broken process is still “alive” and
can be inspected for more than just data values, the broke(1) rc script can be used
to locate and terminate broken processes.

Yet another way is by using the proc(3) device ctl file for the process. A write
of kill to that file, terminates the process. This way works fine over the network,
since the file can be used remotely.

4.11.1 Exiting and aborting

• /sys/src/libc/386/main9.s:1,7

The entry point for the user process is usually _main. _main is an assembly
stub that calls the C entry point, main, after doing some work for the profiling
clock and the main arguments.

Remember that the return value of exec was the profile clock? That value was
“returned” to the new program.

• main9.s:9,13

If main ever returns without calling exits, exits would still be called with the
“main” string as the argument.

sysexits() Terminates the process reporting a reason.

• /sys/src/9/port/sysproc.c:502

One way or another, sysexits is the entry point called by the process termi-
nating.
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• sysproc.c:505

In case the user error string (the first argument) does not look fine, this is the
string reported.

• sysproc.c:509,522

If no status string was supplied, that is ok. If it was supplied, copy it to the
kernel buffer buf. validaddr and vmemchr are used to be sure that addresses
are valid. If addresses are not valid, an error is raised and status is set to
inval.

• sysproc.c:523,424

pexit kills the process; the return is to make the compiler happy—all system
calls should return a value.

• proc.c:732

The 1 as a second argument asked pexit to release the process memory; it is
really being killed.

sysexits

pexit() Terminates the process.

• proc.c:745

By setting alarm to zero, any alarm is canceled. The Proc may still be linked
into the alarm list. This is not a problem because if a new process reuses the
Proc entry, and it does not use alarms before expiration of a previous alarm for
this Proc, alarmkproc will find its alarm set to zero and ignore it. If the new
process ever sets an alarm, it will be first removed from the alarm list.

• proc.c:747,759

All resources cleared while the lock was held. Releasing them may take some
time, so do not hold the lock for more than needed.

• proc.c:761,770

Now resources are released by calling routines that decrement their reference
counters; if a reference counter gets down to zero, the resource is released—
perhaps causing other decrements in reference counters for structures used by
the resource; e.g. the fgrp uses channels that are cclosed when the fgrp goes
away.

• proc.c:776

Kernel processes are always there, and the author does not do housekeeping
for them; but user processes have parents and there is a relationship to be
maintained.

• proc.c:777,782

All processes have a parent. You will see what happens to a process when its
parent is not there. Hint: read the panic message!

• proc.c:784,788

A waserror but in a while loop. Remember that waserror returns false when
first called to set the error label, and then it returns true when an error jumps
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back to the waserror? The effect of the while is to call waserror again when
an error happens—i.e. to restore the error label popped by error. That means
that the process keeps on trying to smalloc a Waitq structure, no matter what
errors happen. But, smalloc provides guaranteed allocation. What error could
be raised by smalloc?

smalloc calls tsleep to wait for free memory if the pool is exhausted, tsleep
calls sleep, and sleep raises an Eintr if the process is interrupted. So, no mat-
ter how many interrupts the process gets, exits will not be aborted returning
to the process with an Eintr error; exits does not return, ever!

• proc.c:790

readnum prints the number given into the buffer passed. It returns the number
of characters used to print the number, or zero if it did not fit. The buffer
is wq->w.pid, and the number id up->pid. So, the pid field in the message
for the parent kept (in the Waitq allocated) is being filled up with the ascii
representation of the pid.

• proc.c:791,798

These calls to readnum are filling up the the wait message for the parent with
times as said in wait(2). TK2MS converts ticks to milliseconds and the time
entry at Treal is used to know for how long the process had lived. Saw how
the message can be understood at any architecture? Guess why?

• proc.c:799,805

If a non-null (and not empty!) error string was supplied by the process, it
is copied into the error message in the wait message—note how the message
is prefixed with the name for the text file and the process pid. That is very
important when the parent process is a shell, like rc, to let any human user
know who did die. It is also important if the parent cares about who died.

• proc.c:807,830

If the parent’s pid (p->pid) does not match parentpid, the parent is not “asso-
ciated to the child” (see rfork) and does not care about the wait message from
this child; if the parent is broken it does not care either; and if more than 128
wait messages are queued for the parent, the author thinks that the parent does
not care either. Daemon processes that fork a child per request, but “forget”
to call wait would be able to leave an indeterminate number of wait records
behind them but the 128-check enforces a 128 limit. This is yet another detail
where you can see how the author tries to protect the system against buggy
processes.

To pass the wait message for the caring parent, just queue it in the parent’s
waitq (queue of wait records). If the parent cares, the number of child processes
and wait records is adjusted. The wakeup, awakes the parent in case he is
sleeping waiting for a wait record. By the way, remember that nchild was
incremented in rfork only if RFNOWAIT was not set?

• proc.c:833,834

User processes bookkeeping is complete. This code is executed for both kernel
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and user processes. If the memory should not be released, the caller wants the
process to hang around in a broken state.

...

pexit

addbroken() Keep the process in a Broken state.

• proc.c:670,696

addbroken moves the process to an array of broken processes, and changes the
state to Broken. By calling the scheduler, addbroken will not return unless the
process is set again ready; that happens when the process is really terminated
(e.g. by a write of kill to its ctl file). Should this happen, addbroken returns
and the remaining code at pexit would terminate the process. It is nice how the
code to terminate the process is shared in this way for both processes exiting
and processes aborting. When NBROKEN broken processes exist, the first who
broke is terminated to make room for the new broken process. One thing to
note is that too many broken processes are a waste because they would probably
never be debugged. Perhaps for CPU server kernels it would be better to keep
a broken structure per user using the CPU server, but the author thinks this
suffices. Another thing to note is that the broken process is terminated just by
placing it in the ready queue—when it runs, pexit will terminate the process.
Just simple.

...

pexit

• proc.c:836,844

Segments released. The process’ mind is going. Only when the last reference to
each segment is gone, it is released. Do you think that these lines would destroy
the stack segment? And the text segment?

Although you are not expected to answer this before the chapter on virtual
memory, what happens if there is an ongoing page fault on one of the segments
released? How can the page fault handler ensure that the segment will not go
away under its feet?

• proc.c:846,849

By setting pid to zero, no child will leave a wait record because of the test at
line :815. The wakeup is not for this parent process (which is dying and not
in pwait), it would awake any process waiting in devproc.c:561 for a child to
die.

• proc.c:851,854

Now that nobody is linking more wait records, release all wait records queued—
the parent could terminate without calling wait.

• proc.c:856,862

Awake any debugger waiting for us (e.g. waiting for a note to be posted for us)
and dissociate from the debugger.
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• proc.c:864,866

After a couple of locks are taken, the state is set to Moribund and sched is
called. sched will never return because the process is really destroyed and will
not get back to the ready queue. If a bug makes sched return, panic. Why does
the author acquire these locks here?

• proc.c:64,79

sched calls gotolabel for m->sched, which leads to code in schedinit. This
time, this branch is taken and the process state is set to Dead. After releasing
MMU data structures for the current process (using the prototype page table
for the current processor afterwards), the process is linked into the free process
list. Releasing MMU data structures and linking the process in the free queue,
requires both palloc and procalloc locks to be held. However, right now in
schedinit, which one is the current process? There is no process. What if lock
couldn’t acquire the lock at the first attempt? What if it even called sched?
That is why the locks are acquired while there the dying process is still alive
enough for requesting a tas lock.

The kernel stack is kept bound to the Proc (and reused by the next process
using that Proc). After the locks are released, any other processor could pickup
the Proc and its kernel stack could be reused. This is no problem since the
current stack is the “scheduler stack” kept near Mach. Using a scheduler stack
allows the author to step back out of the dying process while killing it.

• proc.c:80,83

The current process is gone, sched called and it will call runproc to run another
(existing) process.

In case you didn’t notice, processes aborting, generate a fault that (as you will
see) end up calling pexit with an indication not to release the process memory.

By the way, it would be nice not to release the process resources (fgrp et al.) for
broken processes (at least when explicitly requesting so), so that the process could
be debugged even looking at the set of open file descriptors; and perhaps it would be
feasible to fix things up a bit and let the process get ready again. One simple way
to do so would be to move the process into the Broken state before line :747, and to
add control operations to fix up the process state and set it back to ready.

I think it’s time now for you to look at figure 4.12 and see how a process changes its
state. Probably you did draw a scheduling diagram while you learned how processes
are born, get ready, etc. Compare yours with the one in the figure. For the sake of
simplicity, I have not shown the Scheding state, which is used while the processes is
changing its scheduling state in several places (e.g. from Ready to Running and from
Dead to Ready).

4.11.2 Waiting for children

syswait() Waits for dead children.

• sysproc.c:528

syswait is the entry point for wait(2). After checking that the Waitmsg pointed
to by the first argument resides at valid user addresses, pwait does the work.
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Queueing

QueueingR

QueueingW

Wakeme

Stopped

Rendezvous

Broken

Moribund

Dead

Running

Ready

Figure 4.12: (Simplified) process state transition diagram. Do not take it verbatim:
the Scheding state is missing, Broken processes appear to go right to Moribund,
without passing through Ready.

syswait

pwait() Wait for dead children.

• proc.c:883

pwait receives the Waitmsg to be filled up.

• proc.c:888,889

If the wait queue is being manipulated (a child dying right now at a different
processor?) just give up. Why? seems to be for avoiding deadlocks between
devproc and proc. In any case, the parent is likely keep on calling wait until
he gets the desired wait record.

• proc.c:891,894

Now the lock held.

• proc.c:896,901

If there is no child (dead or alive), abort.

• proc.c:903

sleep until haswaitq; haswaitq returns true if the wait queue is not nil. There-
fore, if there are children in the wait queue, the process will not even sleep. If
all children are alive, the process sleeps until it gets awaken by a dying process,
or by a note.

• proc.c:905,909

Got a dead child, remove a wait queue entry.
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• proc.c:911,912

Nothing else to do, release the lock.

• proc.c:914,918

Return extracted information by copying it to the parameter passed (if it was
not nil), and returning the dead child pid.

4.12 The proc device

Although process creation is done only with system calls, processes are represented
as files for most other purposes. Read the proc(3) manual page to learn what files
are serviced by the proc driver. Proc can be mounted over the network to operate
on remote processes as if they were local; not the UNIX’s /proc, definitely. Files
under /proc/n/ correspond to views of running processes; e.g. two successive cats
for /proc/n/status would return different file contents, because the file contents are
the status of the process, and the status changes over time. Reads under /proc/n

are used to inspect processes, and writes under /proc/n are used to change various
things on running processes.

In the next chapter, you will learn more about file systems in Plan 9, and will be
able to understand better devproc.c, that is where the proc device implements its
file system. However, I think you can understand most of devproc now. I am going
to discuss the code related to inventing a file hierarchy from the set of processes; but
skipping code related just to the file system, which will be clear after the chapter on
file systems.

4.12.1 Overview

• devproc.c:10,28

Several Qid types defined.

• devproc.c:54,67

Here you see how actual Qids are built from the Qid types defined above and
the process numbers. Why does the author do this?

• devproc.c:31,49

This data structure is a template for the directory serviced for each process.
You can see the file names, the Qid for the file, the file length and the file mode.

• devproc.c:757,776

This is the Dev structure linked into devtab. The ‘p’ is the letter name for
the driver, and most fields are pointers to routines used when a channel type
corresponds to devproc. Routines with names starting with dev are default
implementations for channel operations in dev.c. Many of the routines supplied
by proc, relay on generic implementations that use the procgen routine to
iterate through a proc directory. Let’s see some of the routines now.

open...

procopen() Opens a proc file.
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• devproc.c:161

procopen is the routine used when a file under /proc is being opened. The file
to be open is represented by the c channel. In Plan 9, opening a file means to
check permissions and prepare the file for I/O. For example, after you walk to
/proc/3/notepg, you have to open it before writing it.

• devproc.c:168,169

The CHDIR bit is set in Qid, therefore, a directory is being opened; rely on the
generic routine for that.

• devproc.c:171,176

The process slot is kept in the Qid; give the slot to proctab and obtain the
Proc for the c channel. Remember that the file being opened is not a real file,
but some aspect of a process. procopen is locating the process and locking it
so that the process could be inspected without race conditions.

By keeping both the slot and the kind of file in the Qid, the author knows
quickly what kind of processing (and on which process) should be done given
the Qid for the file.

• devproc.c:177,179

The process could have died since the channel was obtained (by a walk) and
the open was requested. If the process died (even if its Proc was reused by a
different process), the PID in Proc will not match the PID in the Qid.

• devproc.c:181

openmode checks omode for invalid bits.

• devproc.c:183

Each file under /proc/n has a type encoded in the Qid (see lines :10,28).

• devproc.c:184,191

The text file for the process is the one being opened (/proc/n/text). Only
opening for reading is allowed, since the text is being used for executing the
process. proctext is the routine doing the job. proctext()Gets the channel for

the process text.

• devproc.c:785,797

Check that the process text is still there and get a reference to the Image for
the process text segment.

• devproc.c:805,807

The image contains a channel to be used for accessing its file.

• devproc.c:809,812

Increment the reference counter for the channel (someone opened it), and check
that channel is still opened for reading. When the process is still there, the code
is not assuming that the image is there; and when the image is there, the code
does not assume that the channel is set up for reading. Why? Hint: processes
are living things.
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• devproc.c:820

Now got a channel for reading the file for the process text segment image. It
has been incref’ed, and will be the channel resulting from procopen.

• devproc.c:193,200

For these files (/proc/n/proc,etc.) nothing has to be done but to check that
the open is for reading—processing continues after the switch.

• devproc.c:202,210

Nothing done; can be opened for read or for write.

• devproc.c:212,216

For /proc/n/ns, mode has to be read and temporary storage for walking the
mount table is allocated.

• devproc.c:218,226

For /proc/n/notepg, only writes are allowed, and not for the first process group
(boot). The id of the process group and the noteid for the process are kept as
a Qid in the channel.

• devproc.c:228,231

Defense against bugs; no other Qid types known.

• devproc.c:233,246

After checking that the process is still there, the generic devopen routine is
called. devopen uses procgen to iterate through the proc/n/ directory search-
ing for a file matching the channel supplied by the user (i.e. the file being
opened, like, /proc/n/ns). Once found, devopen checks permissions and either
raises an error or returns the channel.

wstat...

procwstat() Updates attributes of a proc file.

• devproc.c:250,256

procwstat is used to modify file attributes, including permissions. No wstat is
permitted on directories.

• devproc.c:268,269

Only the user who started the process, and eve can change attributes in proc

files.

• devproc.c:271

convM2D converts the machine independent representation of file attributes
(given by the caller) into a Dir structure, more amenable for processing. The
file could be wstat’ed from a different machine with a different architecture.

• devproc.c:272,279

If the user in the Dir structure (to be written) is not the owner of the process,
a chown is being done. Only eve is allowed to do such thing.

• devproc.c:280

Honor a chmod in the file.
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close...

procclose() No more I/O on a proc file.

• devproc.c:337,342

The temporary storage allocated in procopen is released when the file is closed.

4.12.2 Reading under /proc

read...

procread() Reads from a proc file.

• devproc.c:363,364

procread services reads under /proc files. It corresponds to a call read(f,va,n)
with the file offset set to off.

• devproc.c:378,379

Use the generic routine for reading directory entries.

• devproc.c:381,383

The process could have died since the open was done.

• devproc.c:386,414

/proc/n/mem represents the process memory. Reading is achieved by doing a
memmove to copy the memory being read into the buffer transferred to the caller
of read. The mem file represents virtual memory: offset 0 is virtual address 0.
Not all addresses are valid.

– devproc.c:387,389

Addresses before KZERO or within the user stack are read with procctlmemio,
which checks that addresses are valid and lie within process’ segments.
Perhaps some time ago the user stack was within the kernel portion of the
address space; right now, the first part of the “or” at :387,388 is true
whenever the second part is true.

– devproc.c:391,401

Addresses between KZERO and end correspond to kernel addresses and are
read by a direct memmove without further checks.

– devproc.c:402,413

Remaining addresses correspond to memory found at the two memory
banks in conf—also read with memmove by the grace of the direct map
between physical and virtual memory. Remember that addresses in conf

were updated to be kernel virtual addresses—although early when booting
they were physical addresses instead.

If you trace the kernel execution after the open of /proc/n/mem, you will see
how permissions are checked using the mode kept in the Proc structure for the
process. The author is permissive in allowing any user with permissions to read
kernel memory (even though he protects the memory used to keep user keys,
all memory allocated from xalloc can be read). However, this permissiveness
is good to make it easier to debug and inspect the kernel state.
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• devproc.c:415,427

Profiling is not discussed now, but see proc(3).

• devproc.c:428,451

Copy to the user buffer the text for the first note posted for the process,
and decrement the number of notes. You can see how posted notes can be
read/canceled by reading this file.

• devproc.c:452,458

The Proc structure is read. Useful to debug the kernel: No need to put more
prints nor to attach a debugger just to see a value in Proc, just read it.

• devproc.c:460,483

Useful!, dbgreg pointed to the saved Ureg while the process was switched out.
A read here returns the user context. The code below regread: simply copies
the memory read from the Ureg pointed by rptr. The kregs file corresponds
to the kernel context. When the process in on its way to be switched out, there
is an Ureg saved when last entering the kernel which holds the user register set;
but then the process is really being switched out, there is a label set by the
scheduler before jumping to other process’ kernel label: setkernur sets in the
“kernel Ureg” the PC and SP saved in the process scheduling label. There is
no kernel Ureg, although users are told so. Remaining registers in the “kernel
Ureg” are reported as zero.

• devproc.c:485,518

The status file is invented to contain the name for the text file (:495), the
owner of the process (:496) and the process state (as kept in psstate). If
pssate is not set, the process state name is obtained by translating the process
scheduling state state to a printable representation. Besides, various times
and the size for the process are reported as said in the proc(3) manual page.
To compute the size, the lengths (top minus base) for the various segments
are accounted for. NAMELEN and NUMSIZE are used to pad the various pieces of
status at fixed positions in the “file”. That can simplify a lot the code to read
a particular field of the status file.

• devproc.c:520,539

segment contains a printable representation of the segments for the process.
The segment array is iterated to obtain segment names, types, and boundaries.

• devproc.c:541,575

The contents of the wait file are the next wait message from a died process. The
code uses the waitq as you saw before for wait(2). The read on /proc/n/wait

would block until a child dies. If you see line :554, the read would fail if there
is no children and the read of /proc/n/wait is being done by the process
/proc/n/. That is, the parent can use read to block waiting for a dead child;
other (unrelated) process can read this file to cause a “wait” for the child. Per-
haps the wait system call could be removed in favor of reading /proc/n/wait.

• devproc.c:577,611

Not to be discussed now, but the code synthesizes the text corresponding to
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commands to reproduce the name space for the process. That text can be fed
to a shell to recreate the name space even at a different machine.

• devproc.c:613,616

noteid is simple. procfds is generating a text representation of open file de-
scriptors.

read...

procread

procfds() Reads a proc file descriptors file.

• devproc.c:286,335

The Fgrp for the process is iterated and for each open file descriptor, the channel
is inspected to obtain the open mode, device type, Qid, file offset, etc.

4.12.3 Writing under /proc

write...

procwrite() Writes a proc file.

• devproc.c:661

procwrite is analogous to procread, but does a write instead. The write is
for file referenced by c, and corresponds to a write(f,va,n) when file offset is
off.

• devproc.c:669,670

No writes on directories.

• devproc.c:677,680

A write to notepg would post a note to the process group. You saw how
pgrpnote did that. Remember that procopen set pgrpid in c to contain the
noteid? When the user opened the file, the notepg file represented a concrete
note group. Should the process change its note group in the mean time, the file
still points to the old note group. Besides, the process is not checked for death
before pgrpnote is called. So, imagine you want to kill all processes in a process
group by posting a note to the group. Imagine that you open the notepg file,
and then the process starts dying voluntarily; by using the saved noteid, the
file would still cause a note post to remaining processes in the note group.

• devproc.c:691,697

A write to mem is used to modify process memory. A debugger can use this file
to update variables in the debugged process. The process should be stopped
though—because it would be unpredictable what could happen if memory could
be updated while the process is running. procctlmemio is used to operate on
process memory, as happened in procread. If you look at the last parameter it
was 1 in procread and it is 0 in procwrite; it is deciding what to do: read or
write.

• devproc.c:698,706

A write to regs updates the saved registers for the process. A debugger can
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use this to update the process PC, SP, etc. (dbgreg points to the saved Ureg

for the process). setregisters()Updates the process Ureg.

• ../pc/trap.c:734,747

setregisters copies the supplied registers into the Ureg for the process. Both
flags and code and stack segments are ensured to be valid ones. Otherwise the
user could cause a system crash or break system security.

• ../port/devproc.c:708,714

The same for FPU registers. In this case, the user can update all of the FPU
context and no machine dependent routine is needed to ensure that a valid state
remains. If the user is writing a wrong state, he would just harm himself.

• devproc.c:716,718

A write to ctl can be used to perform control operations on the process.

write...

procwrite

procctlreq() Writes a procctl request.

• devproc.c:873,881

procctlreq does the job after copying the request string to a kernel buffer.

• devproc.c:883,884

A write of “stop” to ctl leads to a call to procstopwaitwith the last parameter
set to Proc_stopme. procstopwait()Wais for a process to stop.

• devproc.c:828,835

procstopwait attaches the current process (up) as the debugger for the process
whose ctl file is being written. To setup a debugger for process p, the pdbg

field of p is set pointing to the debugger process, and procctl in p is set to
be the process control operation. The author wrote things so that the control
operation is known to p, and it will honor it if needed. If the pdbg field of the
process’ Proc was set, there was already a debugger and the call fails. If the
process was already stopped, the write of ctl results in a non-operation.

The write of ctl can be done through the network, and in that case, the debug-
ger would be running at a different machine. So, who is the debugger process?
The write request would have been sent through the network, but there is a (file
system server) process in the node of p doing the actual write to the ctl file.
That process would be setup as the debugger in the Proc structure. For the
kernel, it does not matter if that is the real debugger or a remote delegate for
the debugger.

• devproc.c:838

The (debugger) process psstate is set to Stopwait. sleep will make the process
wait. The p process state can still be Running or Ready, so the scheduler can
elect it for running. When the to-be-debugged process runs again because the
scheduler elects it, it will reach soon either the end of trap or the end of syscall
in trap.c.
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trap

notify

procctl() Checks for process control operations.

• ../pc/trap.c:310,313

If it is trap the first one to notice, it would call notify when noticing that
procctl is set.

• trap.c:535,538

syscall would do the same.

• trap.c:552,553

notify checks for notes, but it calls proctl too–when it sees that a control
request is pending.

• ../port/proc.c:1096,1098

If the control operation is to terminate the process because it consumed too
much physical memory, do so. The process is killing itself upon request.

• proc.c:1100,1102

If the process is being killed, do so.

• proc.c:1104,1107

This is for tracing processes, you can ignore it now; although you can see how
it does the same of Proc_stopme when the process has pending notes.

• proc.c:1109,1126

The process stops itself voluntarily. The “ps” state is updated to reflect that the
process already stopped. The scheduling state (p->state) is set to Stopped.
The call to the scheduler switches to a different process and the debugged one
will not run again until it is set Ready (by the debugger). The local state is
used to resume the process in the state it was before being stopped, because it
could be a different thing each time the process is stopped. Before discussing
the wakeup call, note that interrupts were disabled since notify was called.
That makes sense since it messes up the user stack and besides it can stop the
process via procctl.

• proc.c:1116,1119

If there was a debugger waiting for the process to stop, wake it up. The debugger
expects the write to /proc/n/ctl not to return before the process is stopped.

• devproc.c:844

So the debugger sleeps until the process is stopped. If the wakeup runs before
the sleep, the procstopped function will notice and the debugger will not even
sleep. Otherwise the debugger sleeps until the process stops itself and notifies
the debugger.

• proc.c:1118

One more thing, pdbg is set to nil when the operation is done. pdbg is used to
let p know who is its debugger (so it could awake it, etc.), but as soon as p does
not need to know who is its debugger, the “connection” is reset. pdbg acts as a
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lock in that if a debugger is already (waiting for) stopping the process, no other
debugger would be allowed to do so. Once the process is stopped, a different
debugger process can operate on the process.

• devproc.c:847,848

The debugged process could die due to a note post or a control operation.

write...

procwrite

procctlreq

• devproc.c:885,900

Back to procctlreq, a write to ctl with a “kill” string would kill the pro-
cess. Should the process be broken (did fault), unbreak sets it ready again.
unbreak()Terminates a broken process.

• proc.c:699,713

It does so by scanning the broken process array and setting as Ready the one
passed as a parameter—the array is updated to reflect the deallocated entry.

Although it may look silly to scan the array instead of using p, remember that
at most NBROKEN processes are kept broken. In general, processes must be
either running, linked into a ready queue, or linked into the data structure that
prevents the process from being ready. In this case, broken does the job.

• devproc.c:891,895

Should the process be stopped, it is killed by the system. The Proc_exitme

control operation will be handled later by procctl. The process is set back into
Ready state so it could run and kill itself.

• devproc.c:896,899

In any other state, the process will either be Ready, or get back to Ready if it
was sleeping or doing a rendezvous. So just post the note and setup the control
operation.

• devproc.c:901,906

hang requests that the process stops when doing an exec. Just update the
flag accordingly. It is honored by exec, which uses the Proc_stopme control
operation to stop the process doing the exec.

• devproc.c:908,909

A write of “waitstop” uses procstopwait again to stop the process. Unlike the
previous usage, ctl is now zero, which means that no control operation is posted
(:833,834). So, the writer of ctl would sleep until the process is stopped, but
it does not stop the process: it waits until the process stops. For example, a
debugger process may write “hang” to ctl and then waitstop, to wait until
the debugged process does an exec.

• devproc.c:911,917

A write of “startstop” resumes an stopped process (sets it ready) and then
waits until the process stops. Although procstopwait would set procctl to
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Proc_traceme, it is set by hand before allowing the process to run; otherwise
the process could be free running before honoring the Proc_traceme operation.

• proc.c:1104,1107

The Proc_traceme operation is handled by the started process like a stop one,
but only when the started process has a note posted. For instance, a debugger
may set a breakpoint and let the process run until it reaches the breakpoint
or faults. Whenever that happens, procctl would not return at line :1106

because there are posted notes, and the process will stop after awaking the
debugger process.

• devproc.c:919,923

Just set ready an stopped process.

• devproc.c:925,936

procctlfgrp closes all open file descriptors. I don’t know what this control
operation is really for, but it could be useful if other control operations allowed
file redirection to be done by means of proc(3).

• devproc.c:938,949

A write of “pri N” to ctl would set a new base priority for the process. Only
eve is allowed to raise priority this way—it is her machine, isn’t it? Can you
see the difference between the “root” user on UNIX and “eve” in Plan 9?

• devproc.c:951,956

To wire a process to a processor number. You already saw how procwired does
it.

• devproc.c:958,968

A write of “profile” to ctl is clearing the profile information, which hangs from
the text segment profile field.

4.12.4 A system call? A file operation? Or what?

Let’s look briefly at how the user C library implements some services using the system
calls and system services that you now know. I hope you will be reading more of that
library as you learn how the kernel works.

abort() Aborts execution.

• /sys/src/libc/9sys/abort.c

Just crosses a null pointer. The process gets a page fault and enters the Broken

state.

fork() Creates a new process.

• fork.c

Just calls rfork asking for a new process, with a copy of the file descriptor and
rendezvous groups.

postnote() Posts a note.
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• postnote.c

Writes to /proc/n/note or to /proc/n/notepg.

getenv() Get the value of an environment variable.

• getenv.c

Just read the file “/env/name”.

getpid() Gets the process it.

• getpid.c

Just read the file “#c/pid”—see cons(3); more on the next chapter.

Can you see how even most of the user utility functions are actually using file
operations?



Chapter 5

Files

File systems are central to Plan 9. Remember that the key point is that everything is
a file and files can be accessed over the network. In section 3.11, “Files and Channels”,
you already learned a bit about files and channels. You should reread that section if
you forgot it and then continue with this chapter.

In this chapter you are going to read the implementation of the various system
calls related to files, including bind, chdir, close, seek, dup, open, read, create,
fd2path, remove, and wstat. Besides, as an example of a file system, you are going to
revisit kernel devices (e.g. pipe), looking at the generic routines provided in dev.c.
Finally, the device translating calls to file procedures into RPCs, mnt, is also discussed
in this chapter.

During this chapter, you will be reading these files:

• Files at /sys/src/9/port:

sysfile.c

File system calls.

chan.c

Channels.

cleanname.c

Name cleanup.

portdat.h

Portable data structures.

pgrp.c

Name spaces.

dev.c

Generic device routines.

devpipe.c

Pipe device driver.

devmnt.c

Mount driver (remote files).

181
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cache.c

Caching remote files.

qio.c

Queue based I/O.

. . . and several other ones used as examples.

5.1 Files for users

Users operate on files using the system calls provided at sysfile.c. As you already
know, such system calls are serviced by using channel operations. Let’s describe now
how such system calls work, without looking too much into the channels. I hope you
get a better image of what is going on after seeing how your system calls are translated
into channel operations. See open(2), dup(2), and close(2) manual pages.

sysopen() Entry point for the open system call. Prepares a file for I/O.

• /sys/src/9/port/sysfile.c:221

Users operate on files by obtaining file descriptors using the open (also create)
system call. sysopen is the entry point for open.

openmode()Checks the open mode for a file.

• sysfile.c:226

openmode is called with the second argument. It does a cleanup of the omode

parameter for open and returns a clean omode. In this case, the cleaned mode
(the return value) is not being used. The author does this call to let openmode
raise an error in case the open mode is not valid.

• sysfile.c:227,231

Cleanup the channel for the file being opened on errors.

• sysfile.c:232,233

namec opens the file and returns a channel for the file name given. It resolves
the name in the current name space; namec is discussed below.

• sysfile.c:234,236

A new file descriptor allocated to the new channel.

• sysfile.c:237,238

The descriptor points to the channel used. open is done.

sysopen

newfd() Installs a new file descriptor for the given channel.

• sysfile.c:46,65

The Fgrp contains an array of pointers to channels. File descriptors are simply
indexes into this array. For example, if file descriptor 3 is open, fd[3] would
point to the channel for the file. After locking fgrp, the array of pointers to
channels is searched for a nil entry. The first entry unused (:54) is selected.
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Lines :56,59 allocate new entries in case all entries in the array are being used.
maxfd records the end of the used part of the array, and the new allocated file
descriptor is set to point to c at line :62.

sysopen

newfd

growfd() Resizes the file descriptor set.

• sysfile.c:13,43

When the descriptor array is exhausted, growfd resizes it, DELTAFD new entries
at a time. The routine does nothing if the array is already big enough to hold
the descriptor desired (fd); it can be used just to check that f is big enough
(nfd is the number of entries, used or not, in the array). The array will never
contain more than 100 entries going from 0 to 99 . A good reason to limit the
number of file descriptors to 100 is that nobody could allocate a big amount
of file descriptors to exhaust kernel memory. Another good reason is that this
limit can convince users to close unused file descriptors, which would also release
resources on the file servers involved. Lines :27,31 are double checking that the
number of allocated descriptors is kept under a reasonable value, for the same
reason. Note also the use of malloc, and not smalloc. If no more memory is
available, the open will fail, and the process will not sleep waiting for memory.

sysdup() dup(2) entry point. Duplicates a file descriptor.

• sysfile.c:180

sysdup is used to duplicate a file descriptor. After dup, two file descriptors
point to the same channel.

• sysfile.c:189,190

fdtochan returns a reference to the channel given the file descriptor. c holds the
channel for the file descriptor being duplicated, and fd holds the file descriptor
number where the user wants to place the duplicate.

• sysfile.c:191,205

The user specified where to place the duplicate. growfd ensures that the entry
for the descriptor exists in the array. maxfd has to be updated in case the new fd

is the biggest one. Finally, the channel is linked into the descriptor entry. The
dance with oc is to close the previous channel in case the “duplicate descriptor”
was already opened. The channel c has now another reference (at fd).

Can you find out where is the incref for the channel?

...

fdtochan() Gets the Chan for a file descriptor.

• sysfile.c:68

fdtochan is used wherever the kernel wants the channel given a file descriptor
specified by the user.

• sysfile.c:77,80

Has the file descriptor a channel? nfd is checked before fd[fd] to be sure that
the entry exists.
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• sysfile.c:81,82

If the caller of fdtochan said iref, a new reference is added. This is where the
reference was added for the duplicated channel in sysdup.

The reference is added while f is locked, so that the channel does not disappear
even if someone else is releasing the Fgrp.

• sysfile.c:85,89

Ignore this by now.

• sysfile.c:91,104

If the caller gave a valid mode to specify that the channel is going to be used
according to mode, check permissions. If mode is -1, or if the channel mode
allows everything, no check is done (the kernel can pass -1 to fdtochan to
request the channel no matter what is going to be used for). Otherwise, the
checks ensure that a read only channel is not used to truncate a file and that
whatever be mode (read or write), the channel has the bits on.

syscreate() create(2) entry point. Creates a file and opens it.

• sysfile.c:735,753

create creates a new file and returns an open file descriptor for it. It is similar
to open, but note how Acreate (and not Aopen) is given to namec; and how
the last argument of namec specifies the permissions for the new file. Besides
resolving the path given by the user, namec would create the file and return a
new channel for it. Probably it would be good to use a single system call for
both open and create—even though users could still have to different routines
to prevent accidents.

sysremove() remove(2) entry point. Removes a file.

• sysfile.c:755,776

remove removes a file (be it a file or a directory). It uses namec to get a channel
for the file, and then it calls the device specific remove function, which removes
the file.

Removing a directory does not require that the directory be empty, it depends
on what the file server implementing the directory wants to do (e.g. see upas/fs
in mail(1)).

sysclose() close(2) entry point. Closes a file descriptor.

• sysfile.c:271,277

Users close their file descriptors using close(2). sysclose is the entry point
for that. fdtochan is called, but the channel returned is not used. If the file
descriptor is not valid, fdtochan will raise an error and sysclose would be
done. Otherwise, fdclose is called to close the open file descriptor.

sysclose

fdclose() Closes a file descriptor with the matching flag.
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• sysfile.c:242

fdclose closes fd.

• sysfile.c:248,254

First, the channel (c) for the file descriptor is obtained. After fdtochan and
before line :248 another process could have closed the file descriptor, so c has to
be checked to be still there. The call to fdtochan not only checked that the file
descriptor was open, it also checked that the entry in the array was allocated,
so the author can index on it safely—the array can grow but it does not shrink.

• sysfile.c:255,260

The flag given to fdclose is checked against the channel flags. If the flag is
not set in the channel, the routine returns—without closing the descriptor!

That is useful to close only those descriptors that have a flag set. Saw how the
author writes routines that can be used in more than one way? Did you read
“The Practice of Programming”?

• sysfile.c:261,267

The first line closes the descriptor, the last line drops the reference to the channel
(which is actually “closed” if this was the only reference for it). Besides, if the
descriptor closed is the biggest one, maxfd is updated to mark the end of the
used part in the file descriptor array.

But for namec and cclose you already know how file descriptors are added and
removed from the process Fgrp. You also know how are new Fgrps allocated, du-
plicated, and deleted when processes are created and deleted. So, what remains for
you to understand what the user sees of the file system (names and descriptors) is to
discuss name spaces.

5.2 Name spaces

In Plan 9, every process has a name space. Well, every process group has a name
space. Usually, processes sharing a “session” share their name space. For instance,
every rio window starts usually with a new name space, which is a copy of the name
space for the process that started the window.

The name space is simply a mapping from names to files (actually, from names to
channels to files) that can be adjusted to alter the set of existing mappings. Name
spaces are implemented in /sys/src/9/port/pgrp.c (because each process group
has its own name space) with tight cooperation from the implementation of channels
in chan.c. To understand name spaces, it is crucial to remember that every Proc has
a Pgrp (name space), as well as a slash channel (root directory) and a dot channel
(current directory). To understand the implementation of name spaces, I think it is
better to see how are names resolved; then you will understand better the code used
to customize the name spaces.

As you will see through this section, name spaces can be customized by using
mount(2) and bind(2) to add new entries. Figure 5.1 shows an example of this. You
should read the paper “The Use of Name Spaces in Plan 9” [12] from volume 2 of the
manual if you are confused.
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bin/

ls grep

bin/

ls grep

swd

386/

swd

sparc/

n/

otherhost_net/

ether0

When running on
a PC

When running on
a Sparc

/

bin/

bin/ usr/386/

nemo/

sparc/net/

ether0ls grep
swd

bin/

ls grep

/

bin/

bin/ usr/386/

nemo/

sparc/net/

ether0ls grep
swd

bin/

ls grep

swd

386/

swd

sparc/

n/

otherhost_net/

ether0

Figure 5.1: Name spaces for a couple of processes. Note how they differ. Each name
space has in /bin appropriate binaries for the architecture used. Besides, the file used
for the ethernet device seems to come from a different machine.
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5.2.1 Path resolution

namec() Get the channel for a given file name.

• chan.c:630

namec translates a name into a channel, using the current name space. It receives
an access mode that shows what will be done with the file (e.g. create it, open
it, etc.) as well as an open mode that specifies whether the caller is going to
open the file for reading, writing, etc. Perm is used to initialize permissions for
files being created.

• chan.c:641,642

namec is called with paths that come from user code; don’t trust them and check
that they are at least a non-empty string. If the caller of namec “consumed” all
the path, there is no such file.

• chan.c:644,651

The (virtual) address is not bigger than KZERO, which means that it is an user-
supplied path (not a kernel supplied one). So, verify that the memory from
name to the end of the string is valid; note how BY2PG is used to do only one
check per page (perhaps this could be embedded into vmemchr?).

• chan.c:653,658

In cname, the author keeps the name for the file pointed to by channel; release it
on errors. You will understand soon the reason for keeping names on channels.
Can you guess it now? Hint: consider how symbolic links mix with cd on UNIX.

• chan.c:660,663

Names are resolved differently depending on the first character of the path
supplied. The switch is just selecting the starting point for resolving the name.

Names starting with / are resolved within the pgrp, but starting at slash;
names starting with # are resolved within the kernel driver name space (they
are kind of absolute names for kernel devices); everything else is resolved starting
at dot. Once the starting point is selected, a name can be resolved by iteration,
resolving one path component at a time. Lines :660,726 are setting up things
so that lines :728,732 could iterate to resolve the entire path. But how are
things set up?

Callers of namec usually want to know what is the name (without any previ-
ous path; just the file name) for the file just resolved; e.g. when executing a
new program, up->text is set with the file name (ls) for the file (/bin/ls)
being executed. The author sets elem pointing to the elem field of the current
Proc. As each path component is resolved, elem is updated to contain the path
component. So, the caller of namec can later use up->elem to recover the file
name.

The author sets mntok to reflect whether a mount operation is allowed in the
file name being resolved or not; by default, it is allowed. More on that later.

isdot is set whenever the path being resolved corresponds to the current direc-
tory. By default, assume it does not.
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• chan.c:664,665

Resolving an absolute path (starts with “/”). newcname creates a channel name
from a string; so cname is set to keep the given path.

newcname()Creates a channel name.

• chan.c:108,122

A Cname is used to share names among channels with the same name. It is
reference counted. The actual memory allocated is CNAMESLOP (20) bytes more
than needed to hold the path. That seems to be to permit changes in the name
that increase the path slightly. The ncname counter is used to keep track of how
many channel names there are; If the author sees that the number of names is
close to the number of channels, there is no point on sharing channel names. The
path length is kept within Cname. Although it could be recomputed by calling
strlen, the author prefers to call strlen just once, and reuse the computed
length whenever it is needed.

• chan.c:666

So, what follows the “/”?

skipslash()Advances a name past the prefix slash (if any).

• chan.c:862,872

skipslash returns a pointer past the /. The path could be //xxx, and skipslash

would skip all the adjacent slashes. Users seldom write //, but programs do;
just define a variable v1 to be /a/b/c/, and then add a relative path v2 of
the form x/y: you get /a/b/c//x/y. The system should cope with that. Lines
:867,870 remove any “.” component, so that file servers do not see unneces-
sary “.” names. The system is replacing paths like “/./a”,“./a”, and “/a/.”,
with “/a”,“a”, and “/a” respectively. By understanding “.” here, this code
does not need to be duplicated at every file server in the system, and what is
better, the meaning of “.” can be kept consistent across file servers.

I lied a bit, file servers can still see “.” as a path. Keep on reading.

• chan.c:667

Iteration to resolve an absolute path should start at slash, so get a clone of the
slash channel for the current process. A clone is needed because the iteration
used to resolve the path will “move” (actually, walk) the channel to point to
each file/directory along the path name. If the author used up->slash to walk,
the root directory for the process would change.

After this line, cname is the entire absolute path, name points to the first compo-
nent name (after the slash, once any dot has been removed), and c is a channel
pointing to the root directory for the process. Besides, mntok and isdot are set
appropriately. Although elem has not been set, nextelem will take care of that
later.

• chan.c:669

The name is referring to a kernel device path (e.g. “#SsdC0” to specify the disk
sdC0 from the sd device). Kernel device paths allow you to use devices even
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though you may have an empty name space (Remember the implementation of
the getpid function in the C library?)

• chan.c:670,679

As with absolute paths, the channel name is the supplied name. Mounts were
allowed for absolute paths, but not for kernel device paths. The author wants
kernel paths to remain the same, so mntok is set to zero. Besides, elem is set
to contain both the initial “#” and whatever follows until the next slash. The
n<2 check would copy the slash in“#/”, which is the name for the root device’s
root directory. So, elem is set to contain the file name.

• chan.c:680,697

When you use a kernel device path, you are actually “attaching” to (mounting)
the file tree serviced by the kernel device to your name space. Once it is attached,
you can resolve path components within the device’s file tree.

Lines :692,695 are extracting the first “rune” (e.g. character for Spanish, but
something different for a Japanese) and looking if it is an “M” (utfrune is an
strchr for runes). If it is an “M”, the path is “#M”, which corresponds to a
mount driver path (see mnt(3)). The mount driver is the one issuing RPCs for
remote files when you perform a file operation on them. If users could attach to
mount driver paths, they could bypass file permissions. Imagine that a server
checks credentials from a client when the server file system is attached to the
client name space. Once the client has been allowed access, another process
could try to “borrow” some files serviced by the mount driver on behalf of the
previous process. By denying attaches to mount driver path names, the only
way to get files from the mount driver is by attaching to (and authenticating
with) a remote file server.

Lines :696,697 just check that the Pgrp does not have the noattach attribute
set, which would prevent attachments. This flag can be used to prevent a process
from acquiring more files than found on its name space. If you don’t trust a
program too much, you can build a name space where the program cannot hurt
anybody else, and set the noattach flag. These lines forbid attachments when
noattach is set and the device is any of “#|”, “#d”, “#e”, “#c”, or “#p”; see the
comment to learn which devices they are. The comment says that it is okay to
allow attachments on these devices (i.e. if r is contained in “|decp”, noattach
should be ignored). However, that would need a not (’!’) before utfrune. I
think that the comment is right, and the if condition is missing a “not”.

• chan.c:698,700

r holds the first character after the ’#’. That character identifies the kernel
device. devno returns an index into devtab for the given device character. The
1, is to tell devno that it is the user the one specifying a device name; it is okay
if the user is mistaken: the device may not exist. If a 0 was given, devno would
panic if the device is missing—that would be a kernel bug.

• chan.c:702

The initial channel to resolve a kernel device path is the channel obtained by
“attaching” to the device file tree. That channel points to the root file for the
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device. c is setup properly now. The channel does not need to be cloned because
it is a brand new channel.

• chan.c:703

Once the initial name is processed (the device name), advance to the next one;
as the author did after processing the “/” for absolute paths.

• chan.c:705,707

Must be a relative path. So, the name for the channel is the name for the current
directory followed by the relative path supplied by the user. up->dot->name->s
is the C string in the Cname for the dot directory of the current process. Once
cname has a Cname built from the current directory name, addelem adds, as a
suffix, the relative path.

addelem()Adds a suffix to a name.

• chan.c:137,148

If the name is shared between several channels, make a new copy so that adding
a suffix to the name will not change the name of other channels using the shared
copy. For instance, when a channel is cloned, the name is shared among the
clones; if a clone changes its name (e.g. because of a walk), other clones should
be kept untouched.

• chan.c:150,158

More space is allocated to hold the suffix (s) and the small extra space.

• chan.c:159,160

The new name is prefix+/+suffix, unless prefix was really “prefix/” or suffix
was “/suffix”.

• chan.c:708,711

The starting point to resolve the path is dot, get a clone of the dot channel in
c—the clone is needed for the same reasons it was needed for absolute paths.
The call to skipslash would simplify things like ./x and .//x down to x. If
name is the empty string after simplifying the path, name referred to the current
directory, so the author sets isdot.

When isdot is set, there are no further elems in the name; this case is handled
as a special case by the code following.

• chan.c:714,717

Starting to walk on the channel, close it on failures.

• chan.c:719

nextelem obtains the next “component” name in the remaining path name,
placing it in elem and advancing name past the element; the advanced name is
returned, hence the assignment.

nextelem()Get the next element from the name.

• chan.c:903,926

nextelem is called after skipslash, so there is a bug if the first character is
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a slash. If there are no more slashes, the whole name is the next component
name. The loop copies the component name to elem (up->elem), one rune at
a time. isfrog contains characters that cannot appear as a component name.
Looks like Rob Pike decided to try allowing blanks in component names. After
the element name has been obtained, skipslash does more “dot” and “slash”
cleanup and advances to the next component name.

For paths like “/” and “.”, nextelem would set elem to be the empty string
and it would advance name up to the end.

• chan.c:721,726

mount is discussed later.

• chan.c:728,732

The heart of path name lookup. For each component, walk updates the channel
to refer to the next directory/file in the path. nextelem advances the name for
the next component (and cleans it up), and walk updates the channel (receives
a pointer to it).

You now see that because the channel moves down the path, slash and dot

had to be cloned.

When the loop finishes, the name has been resolved, but for the last component!
In /x/y/z, c would then correspond to /x/y, and elem would be z; name would
be an empty string after nextelem extracted z to elem.

It is important to stop before the last component because it could be that it is
a file to be created, and it would make no sense to walk to it. When the path is
“.” or “/”, the whole path was resolved when looking up the initial directory
for the iteration. In this special case, the loop does not execute because name

was already exhausted.

• chan.c:734

How to resolve the last component depends on what is the channel for. That is
why amode is used.

• chan.c:735,742

Aaccess means that the file is checked (for existence, attributes, etc.) The
author walks to the final component. For the “.” special case, no walk is
done, since the whole path was already traversed (ignore domount). For the “/”
special case, isdot is not set and walk is called; however, elem is the empty
string and walk would notice and return without doing anything.

• chan.c:744,753

The name refers to a directory the user is trying to get into. The author walks
to it, and checks that it is actually a directory. For the special case, nothing is
done but to check the directory flag.

• chan.c:755,761

The file is being opened. Directories can be opened too. Forgetting about
domount, in the normal case, just walk to the file being opened; in the special
case, no walk is really done (not called, or it does nothing).
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The author used an else instead of the break at line :738 because more things
have to be done by continuing after the Open label.

• chan.c:762,778

If you remember sysopen, a channel was obtained for the given path, but where
was the file opened? Here is where the file is opened. c points to the file to
be opened. So, c->type is used to obtain from devtab a pointer to the open

routine—how to prepare a file for I/O depends on who is implementing the file.
The “close on exec” bit is removed from the open mode supplied to namec; the
file server does not care about it. open may return a different channel than the
one for the file being opened. That is useful, and allows the driver to “generate
files” when other files are opened, like when you open a clone file. In that case,
c already contains its own Cname and the cname created before is unnecessary;
the author sets newname to reflect that.

Bits to flag the channel as close on exec, and remove on close, are kept in the
channel flags (remember that channels with CCEXEC are closed on exec?).

Guess what is saveregisters doing? Hints: the compiler saves registers when
doing a procedure call (so that the called procedure could use registers at will);
if an error is raised and you get back to line :714, which c are you closing?

• chan.c:780,788

Mount is not discussed yet, but note how in the special case nothing is done
and, in any case, c would be pointing to the file where the Amount is to be
performed.

• chan.c:790,792

The file is being created; remember that in the normal case,c points to the
directory where the file is being created at. If the file name was “.”, forbid
creation. (See below for the “/” special case).

• chan.c:794,800

Get a clone for c; read the comment. Clwalk does both a clone and a walk for
the channel; it is not used from the kernel (see clwalk(5)). By getting a clone
before walking, there are no race conditions regarding clwalk—otherwise one
of the walk/clwalk could fail because both of them arrived to the file server.

nameok()Name contains valid characters.

• chan.c:805

nameok checks that only valid characters are in the file name (using the isfrog

array). The 0 means that “/” is not ok. nameok is also used to verify that
a whole path is valid, in which case “/” would be considered to be a valid
character.

• chan.c:806,812

If the walk succeeds, the (cloned) channel points to the file to be created; and
the file already exists! c points to the directory containing the file and is no
longer needed. By setting OTRUNC and going to Open, the file is opened with
truncation to zero bytes—achieving the same effect of create. For the “/” path,
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walk would succeed and “/” would be opened with truncation, which would
typically lead to an (Eperm) error.

• chan.c:813,814

The walk failed (did not raise an error, but failed because of its return code).
That means that the file does not exist. The cloned channel is closed, and c

will be used to create the file.

• chan.c:819,820

Forget this by now. It is just ensuring c is the appropriate directory for creating
a file; assume it is and createdir is not executed.

• chan.c:822,832

When syscreate is called, the caller expects that the file would be opened and
empty after syscreate returns. The algorithm would be simply “if the file
does not exist, create it; else truncate it”. However, things can change during
the algorithm. Just in case file creation fails, assume that it could be because
another process created the file (after the failure of the previous walk and before
the create operation was executed). That can happen more easily here than on
a centralized system because the latency of file system operations while going
through the network is not to be underestimated—see figure 5.2.

Client (namec ) Server Other client

create "a"

ok

walk "a"

error

create "a"

error remove "a"

okwalk "a"

error

Figure 5.2: Open/Create races. Not so probable. . .

Should the create fail, try once more to walk to the file. If the file was indeed
created, the walk in the error handling code will succeed and namec behaves as
if the previous walk succeeded. If this second walk fails, it makes no sense to
try over and over to “create it if walk fails” and “walk to it if create fails”. A
real fix could be done by folding the open and create operations into a single
one, so that the file server could hold a lock for the file while deciding whether
to create the file or truncate it.
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• chan.c:833

Here is where the actual create is done. c is the directory where the file is being
created and elem holds the file name—special cases were dealt with before. The
final argument perm is used now to establish initial permissions for the file.

• chan.c:834,839

Close on exec and remove on close noted in the channel.

• chan.c:847,852

newname was set to true before starting to resolve the path. It is only set to false
after Open, when the channel returned by open was not the one supplied. Only
when open returns an already constructed channel, the name in the channel
is “old”. Otherwise, the name for the channel has been built from the user
supplied path, and perhaps from the current directory name. Thus, most of the
times, the channel name is a new one built by namec. Should the channel name
be new, cleancname does some cleanup on it, and it is set as the new name for
the channel—after releasing the previous name in the channel, if any. Should
the channel name be an “old” one, the new cname just built is not used and has
to be released.

By the way, how does cleancname work?

cleancname()Cleans a channel name.

• chan.c:604,623

cleancname calls cleanname for both device paths and other paths. However,
for kernel device paths, only the portion of the part after the slash (e.g. “/a/b”
in “#S/a/b”) is handed over to cleanname. As cleanname may leave a final
slash for directories, it has to be removed (:619) for all kernel device names but
for the root driver, whose name is #/.

cleanname()Cleans a file name.

• /sys/src/libc/port/cleanname.c:9,52

The code looks more complex than it is. Although you should try to implement
the algorithm yourself if you think the code could be easily written in a more
compact way. It does several things: removes duplicated slashes, removes any
“.” (but for the case when the path is just “.”), and simplifies “b/..” by
removing both. The “..” in “/..” is removed because the parent of the root
directory is the root directory by convention. The path may contain “..” when
no simplification can be done (as in “../x”).

Try to understand the code yourself after reading carefully the comment. If you
get lost, exercise the algorithm with several paths.

By the way, the author put much effort into name cleanup at several places,
as you saw. Although that can be worth just to keep cleaner names, there are
good reasons for this effort, as you will see later.

5.2.2 Adjusting the name space

Name spaces are adjusted (on a per-process basis) by using bind(2) and mount(2)

system calls. Read their manual pages now.
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Both system calls are essentially the same thing: They modify the name space
so that a path will lead to a different file tree. The difference between them come
from where is the “different tree” located. For bind, it is a portion of the file tree
the process sees, whereas for mount it is a file tree serviced by a different process. In
what follows, unless I explicitly tell otherwise, I use the term “mount” to refer both
to “mount” and to “bind”. Besides, I use the term “mounted file” to refer to either a
file or a directory which is either bound or mounted; I use the term “mount point” to
refer to either a file or a directory where either a file or a directory has been bound
or mounted. Got confused? read bind(2) and reread this paragraph.

The name space structure is mostly kept under the Pgrp structure for the process.
When a directory is being mounted (or bound) onto an existing directory, it is

feasible to keep both the previous and new contents in place. That is, by mounting
a new directory onto an existing one, you can “add” the contents of the new one to
the existing one. That is done often with /bin, where new “binaries” are added by
mounting other directories like /386/bin, and /usr/$user/bin onto /bin. When a
file is looked up later in /bin, it can be found at any of the mounted directories. A
directory where several other directories are mounted is called a union in Plan 9.

When a new directory is mounted onto a union, the user requesting the operation
can specify where to place the new directory within the union. That is important
because to lookup a file on a union, each directory mounted in the union is searched in
order until the file is found. Flags like MAFTER/MBEFORE request that the new directory
be added after/before the previous ones in the union. For example, depending on the
flag, /bin/cat may be either /386/bin/cat or /usr/$user/bin/cat. Another useful
flag is MREPL, which dictates that the previous directories be omitted from the union
so that the new one replaces previous contents.

Now, consider a file being created on an union. On which one of the mounted
directories is the file created? In the example, is it created in /bin, in /386/bin,
or in /usr/$user/bin? The author added an MCREATE flag that can be given to any
mounted directory. Any new file is created in the first directory mounted at the union
that has the MCREATE flag set.

You now have an overall picture of how mounts work. But before reading how
mount and bind work, it is better to see what is the final effect of a mount/bind.
To do so, let’s look at what does namec to resolve a path taking into account mount
points.

Walking mount points

namec() Get the channel for a given file name.

• chan.c:630

namec resolved a name into a channel by walking a file hierarchy. Now you know
that, at some point, a new file tree may be bound to the file tree, and namec

should walk through the mounted tree.

• chan.c:725,726

Before this point, the initial channel for the iteration has been set to be c and
elem contains the name for the first component to resolve. Now, unless the path
is for a kernel device (!mntok), the path corresponds to the current directory,
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or the path is not being resolved to mount the root directory (elem is empty),
domount is called. The channel to start the iteration is the one returned by
domount, which may be c or may be not.

namec

domount() Process mount points for a channel.

• chan.c:392

domount is just “doing” the effect of a mount on a file. It receives a channel for
a file, c, and takes care of what channel should be used instead when something
has been mounted on c. The processing for a mount point is done at a channel,
and not at a file. That is reasonable if you think that mount is a client operation,
and not a file server operation. The client kernel sees the files through channels,
therefore the processing to honor a mount point can be done by looking into
the channel of interest.

• chan.c:398,399

First the name space (the process group Pgrp) for the current process is locked
for read. This is important since domount is called often for dealing with possible
mounts at a channel. Since processes walking through the file hierarchy are not
modifying it, they can “read” the information for the channels traversed at the
same time; a read lock prevents any change while there are readers, but allows
multiple readers at the same time.

• chan.c:400,403

A channel has an mh field, that points to a “mount head” or Mhead. An Mhead

(portdat.h:232,239) contains information about what is mounted upon the
channel: from is a reference to the channel used as a mount point, mount is a
reference to whatever is mounted there. The information about what is mounted
in the channel is actually found in the list starting at mount; from is used just
to recover the mount point given the Mhead.

At these lines (:400,403), any previous reference to an Mhead for the channel
is released (putmhead only drops the reference to the Mhead). More later.

• chan.c:405

domount iterates over a set of MHeads.

• portdat.h:394,405

Apart from the noattach flag, and a read/write lock, you see an array of
MNTHASH Mhead hash entries. This is the real mount table; see figure 5.3. Each
“process group” has a namespace with mount entries dictating how is the names-
pace modified for the Pgrp. The MOUNTH macro applies a simple hash function
to a channel and returns the hash bucket for it on the mount hash table. The
hash function uses the qid.path to hash the channel.

The loop iterates on the hash slot for the channel, which has a list of Mheads

for channels with the same hash value. The list is built using the hash field of
Mhead.

The mount information is kept at Pgrp, in the hash table, and not at the mh

field of Chan; mh is just a “cache” for the mount information—so that the table
does not need to be scanned all the times.
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/rc/bin
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old /bin + /386/bin + /rc/bin

Figure 5.3: Mount structures. Here you can see how two directories have been
mounted over /bin, with the MBEFORE flag.

• chan.c:406,407

Different channels may have Mheads (because they were used as mount points),
and different channels may have the same mount-hash (MOUNTH) value. There-
fore, not all channels in the hash list point to c’s mount point—if any. After
acquiring a read lock on the Mhead, c is compared with the from field of the
Mhead. Now, the check is done using eqchan, and not ==. Why?

eqchan()Are both channels referring to the same file?

• chan.c:212,223

eqchan is needed because two different Chans can refer to the same file. Re-
garding the kernel, if two channels point to the same file, they can be considered
to be the same—for mount purposes and other things.

Remember that two channels are a reference to the same file if their Qids, device
type, and device number are the same. In our case, pathonly is true, which
means that vers in the Qid is ignored. Remember, the author is locating Mheads

for the c channel, he doesn’t care if the mount point is modified or not since
the time when m->from was set as a mount point (Mhead) in the mount table.
No matter if c is physically the same channel kept in the table, if its file is used
as a mount point, it is recognized in the table.

• chan.c:407

If the channel in the Mhead does not point to the file c points to, it is a different
mount point; ignore it. If the channel does not correspond to a mount point, it
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will not be in the hash list, and the routine returns the original c channel. In
this case, namec would continue using the initial c channel.

• chan.c:408,413

The channel is the same, so c is a mount point. cclone gets a clone of
m->mount->to, where m was the Mhead for c. Let’s see what this means.

• portdat.h:220,230

Mheads have a mount field pointing to Mount structures. The Mount (list) rep-
resents file(s) mounted at the channel whose Mhead has the Mount linked at.
Several fields are self-describing: next points to following Mount’ed trees at the
same mount mount; head points to the Mhead, so that both the mount point
(head->from) and the list of mounted trees (head->mount) are accessible; and
to points to the channel for the mounted tree. See figure 5.3 if you got confused.

So, if you mount /usr/nemo/bin onto /bin, there would be channel for /bin,
with an Mhead entry in your Pgrp. That Mhead would have from pointing to
the channel for /bin, and mount pointing to a list of Mount structures. That
list would have a Mount structure with to being a channel to /usr/nemo/bin.

• chan.c:413

nc is now a clone of the channel for the file mounted at the file pointed by c.
It points to the same file to points to. A clone channel is needed because the
returned channel is going to be walked upon return from domount; the author
does not want m->mount->to to walk, it should be kept pointing to the mounted
tree. If you read nc as “new c”, it is clear what the code is doing.

• chan.c:414,415

As it was done with c, if nc has an Mhead cached at mh, release it.

• chan.c:416,418

So, what was mh in Chan? It is set to the mount header for a channel that is
used as a mounted file tree. The usual picture is to get a channel c, then do a
domount for it, and later use its mh field to operate on the mounted tree.

It is important to see that since nc->mh points to the MHead in the list, successive
mounted files can be quickly found by following next pointers in the Mount list.
You should remember that nc represents not just the first mounted file; it also
provides access to any other mounted file in the same mount point (by means
of mh).

The xmh field is set as mh when domount crosses a mount point, therefore it is
the “last mount point crossed”; But it seems to be unused. Either a previous
version of the kernel used xmh, or it is there for debugging purposes. The last
line adds a reference—because of mh.

• chan.c:419,421

Channels keep the file name used to create them, as you know. The name for nc
is not the name of the mounted tree, but the name of the mount-point—which
was the name given by the user to namec. The Cname is now shared.
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• chan.c:422,426

c is released, its name will stay because of the added reference. From now on,
the caller of domount should use the channel to the mounted tree instead of the
channel to the mount point.

namec

• chan.c:725,732

Back to namec, c is now the channel to the mounted file—or the original chan-
nel if nothing was mounted on its name. At lines :728,732, walk would call
domount for every path component resolved if mntok is set to true. That means
that during path traversal, what you read about doing a domount for the ini-
tial path component, is also done for each remaining path components (because
each one could also be a mount point).

In the first two lines, if the path is “.” , isdot is set and domount does not
execute. That means that for the current directory, c is the original channel
and not the one for any file mounted on it. Besides, if the path is “/” (elem is
empty) and it is being accessed for mounting, domount does not execute either
and c is also the original channel. Why? keep on reading. . .

• chan.c:736,739, :756,757

The domount for “.” is done if the access is for Aopen or for Aaccess (e.g.,
if you open “.”, you would be opening the mounted file, in case there is one)
However, should the access be for Atodir or Amount, the original channel is
used (i.e. the mount point is not traversed). By default, the author does not
execute domount at line :726 and then executes it later for the two cases where
it should be done. Why shouldn’t it be done for Atodir and Amount?

– chan.c:745,753

All Atodir (cd) accesses got domount executed at line :726, but for an
Atodir into “.”. Thus, for Atodir accesses, “.” resolves always to the
mount point for “.”, and not to the mounted file—if any.

Suppose you “cd” into a directory. “.” is resolved and up->dot is set to
the mount point for that directory. Suppose you later use (not for “cd”) a
relative path, either “./something” or “.”, domount will be called (for a
clone of up->dot) to resolve “.”—it is called either by walk or by explicit
calls at lines :736,739 and :756,757. This means that if you mount
something at “.”, any future relative path will traverse the mount entry
just added for “.”, even though up->dot was set (resolved) before the
mount was done. That is the meaning of the comment at lines :745,748;
if there were a domount here for isdot, you would resolve the mount when
cd’ing into “.”, any ulterior mount would not be processed by your relative
path resolution, because up->dot already crossed the mount point.

– chan.c:780,788

Regarding the other case when domount is not called for “.”, it also affects
“/” paths. When namec resolves “/” or “.” to mount something on it,
domount is not called. When the path has more elements, domount is not
called for the final path element (walk called domount for all but for the
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last element). So, in few words, domount is never called for the last path
element when it is being resolved to mount something on it. Why?

That is because the new Mount is going to be added to an Mhead for the
original channel. When you resolve a path to mount something on it, the
channel from namec is the original channel for the path, and not the channel
for anything previously mounted on it. For example, if you do three mounts
on /bin, the three Mounts would be linked at an Mhead setup for the first
mount. That Mhead would be the header of a list of three Mount entries. To
say it other way, you mount to the mount point, not to something mounted
on it.

What remains to learn how are mount points traversed is to see what does “walk”
when walking through a mount point. Of course you already know how domount

works, but that is only part of the story (given a file, go to the thing mounted on it);
the other part of the story is what to do when you have a directory that is a mount
point, and you have to lookup names on it, or to create names on it.

Directory walking

walk() Walks to a name on a channel.

• chan.c:493

walk is called to resolve a file name (no paths!) on a channel. The channel
points to a directory (mounted or not). After walk, the channel points to
the file named name within the directory pointed to by the channel given to
walk. When the directory is mounted, there many be more than one directory
mounted. domnt tells walk whether the given directory is considered to be valid
as a mount point; if it is not, no mount related job has to be done.

• chan.c:499

ac is the ancestor channel (the parent you are walking through). cp is a pointer
to a Chan pointer; that is to update the passed Chan. After a walk, the caller
might be using a different channel than the one given to walk.

• chan.c:501,502

I told you.

• chan.c:504,508

redundant “..” names were removed, but what about the “..” path? In this
case, undomount returns the channel for the “..” file; more later.

• chan.c:510

Walk is going to move the channel to a subdirectory or to a file contained in
the directory represented by the channel. If the passed channel had a CCREATE

flag stating that it was mounted allowing file creation, clean it up so it does not
pollute the inner file.

• chan.c:511,517

First, the device specific walk routine is called. That is to tell the file server
that the file being used by this client (the kernel), and identified by the channel,
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should now point to name instead. If the device walk succeeds, the ancestor file
contained a component named name;

Domount is called on the channel after the walk. The channel points to the file
named name, but if something was mounted on that file, domount will find a
mount hash entry for the channel Qid, and traverse it. Next time walk be called
on the channel it will walk within the mounted tree, not within the mount point.

An interesting implication of calling the device walk before looking at mount
points, is that to use bind on a file, the file must exist, not just its name.
However, that is reasonable given that all you have to bind something on a file,
is the channel to the file. The ancestor of the file has nothing to do with it.
What I mean, is that bind is not like link on UNIX.

updatecname()Updates the name of a channel after a walk.

• chan.c:477,490

updatecname adds name to the cname in the channel, so that cname still corre-
sponds to the name of the channel file. Now ac is a channel for the file named
name. For “..”, updatecname uses undomount as walk did before; more about
that later.

• chan.c:519,520

The device walk failed; i.e. there was no such file below the file pointed to by
ac. Now what?

The device walk just tried the name in the served file tree; But it could be that
the ancestor channel is a directory with other directories mounted on it (i.e.
you are walking through a union). In this case, the channel has a non-nil mh
pointing to the Mhead for the mount point. Besides, it is clear that in this case
the walk could fail yet the file may be there because of a mount.

Remember that the channel mh was set by domount, in case the channel had
something mounted on it. Well, not exactly, domount received a channel with
something mounted on its file name, and domount returned a substitute channel
for the mounted file, with mh set; but you get the picture. What follows is done
only for channels that correspond to mount points.

• chan.c:522,530

Going to exercise mounted files in turn. Hold a read lock on the Mhead.

• chan.c:531

Remember, mh->mount is the first Mount entry for the channel, and they are
linked through next. The author is iterating over the mounted files.

• chan.c:532,537

After getting a clone for the channel pointing to the mounted tree, try the walk
on it. Should it work, we are done: got the file!. Otherwise, try with the next
mounted thing. Why is a clone needed? Hint: consider what would happen to
the mount entry if its to channel was used for the walk.

• chan.c:542,543

No luck, no such file at any unioned directory.
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• chan.c:545,548

Because c is already resolved, drop its mh reference, if any. cclone asked the
device for a clone channel, it may come with an mh reference, but it should
have none; because it is already resolved and it does not represent the mount
point—it represents just the file mounted on it. Should mh remain set, further
calls to walk could try to iterate over the mount entries found through it.

• chan.c:551,556

The name for the channel updated. The name coming out of the mounted tree
is mostly ignored, and the channel name is updated to contain the name for the
channel given to walk plus the element name: the channel name is the name
used by the user to walk from the root to the channel. Two channels may point
to the same file, yet have different names because of bind. Start to understand
why channels have cnames?

• chan.c:557,561

The channel given is updated with the new channel, and it is checked as a
possible mount point by domount. Although the channel points to a file in a
mounted file tree, its name can be a mount point too. domount would replace
the channel with that of the mounted file, if any.

To completely understand walk, you still must read how undomount works. The
one who understands the meaning of “..” when it must cross a mount point (hence
its name), is Undomount.

Consider the case when /usr/nemo/bin/rc is bound to /bin/rc. Now, imagine
there is a directory /usr/nemo/bin/386. If you walk to /bin/rc you end up in the
same directory as if you walk to /usr/nemo/bin/rc. Consider the case when you
do the last walk. Your file is /usr/nemo/bin/rc. Imagine that you walk to ../386,
your file is /usr/nemo/bin/386. Now consider that you walk to /bin/rc, if you later
walk to ../386, you should end up in /bin/386, not in /usr/nemo/bin/386; even
tough “../386” was applied to a channel really at /usr/nemo/bin/rc!

When doing a “walk("..")”, the new file should be the parent of the current file,
but the parent regarding the path used to get to the file. To pick up yet another exam-
ple, if you use the path /bin/rc, you do not care that it was really /usr/nemo/bin/rc,
for you, “..” means /bin, not /usr/nemo/bin/rc.

By recording in channels the name used to create the channel, “..” can be
implemented that way. Both walk and updatecname call undomount.

To make it more clear, consider in our example a walk to “..” on a channel
pointing to the file /usr/nemo/bin/rc whose cname is “/bin/rc”:

1. walk calls undomount (chan.c:506), which returns a channel pointing to /bin/rc,
given the channel pointing to /usr/nemo/bin/rc. The channel name is still
/bin/rc, and the channel still points to “rc”; but now you are at the /bin/rc

tree, not any more in the /usr/nemo/bin/rc file tree.

2. Later (chan.c:511), walk calls the device specific walk routine, which would do
a walk("..") in the channel for /bin/rc, making the channel point to the file
/bin. You are mostly done, but for the channel name, which is still /bin/rc.
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3. At line chan.c:513, updatecnamewould build a name /bin/rc/.. and simplify
it, leading to /bin. You are done!

updatecname calls undomount too. When /bin is also a union, updatecname
would return the mount point for the union, and later chan.c:515, domount
would return the channel for the first mounted directory at that mount point.
That channel has the mh field set so that lookups in unions could work for it
too.

If walk fails when calling the device specific walk for “..”, it would continue
below line :517; if the channel is a union, the same device_walk+ updatecname

+ domount sequence is played at each unioned directory.

...

undomount() Goes from the mounted file to the mount point.

• chan.c:436

Back to undomount, it does part of the “walk” for “..” on c . In our example,
the channel for /bin/rc after the bind of /usr/nemo/bin/rc, was really a
channel to /usr/nemo/bin/rc; only that its Cname was /bin/rc. Undomount

steps back from the mounted file, to the mount point.

• chan.c:443,448

The meaning of “..” depends on the mount table.

• chan.c:450,453

he is the end of the mount table. The loops are iterating over the entire mount
table: all hash buckets, all mount points, all mounted files. A very expensive
operation! (hence the effort to remove unnecessary “..” elements in path
names). Hopefully, there will not be so many mount entries and this would not
have a noticeable impact on system performance.

• chan.c:454

The channel c corresponds to a mounted file (it would be an entry for /usr/nemo
/bin/rc mounted somewhere).

• chan.c:455,462

But, in our example, you don’t know whether it is the entry for the mount at
/bin/rc, or it is an entry for a mount at a different mount point. t->head is
the Mhead for the mount entry, t->head->from is the channel for the mount
point; its name->s is the C string for the mount point channel name. Should
the string be the same that the one in c’s Cname, the mount point is the one
we are looking for (e.g. it would be /bin/rc). Otherwise the loop continues
searching.

• chan.c:463,467

Strings did match, so to step back the union, get a clone of the mount point
and stop the search.

One final note about this. The author breaks just the inner loop and I don’t
see the point on searching remaining mount points once one has been found—I
mean that the two outer loops would continue. I think this is a bug which affects
just efficiency, although the author may have a good reason for doing so.
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Creating files on mounted places

You may remember that

namec

• chan.c:819,820

while resolving a name for creation, namec tries a walk to the file, and reaches
these lines if the walk failed. The file named elem is going to be created under
the file pointed to by c. However, if mh is not nil in c, it is a mounted file.
Besides, it is one of (maybe) many files mounted at the directory where the
elem file has to be created. On which one of these mounted directories must the
file be created: on the first in the union that has the MCREATE bit set. Channels
to mounted files have the CCREATE bit set if their mount had the MCREATE flag.
So, if this channel (the first in the union) has the CCREATE flag, it is the channel
to the directory where the file should be created.

namec

createdir() Chooses where to create a file in a (union) directory.

• chan.c:567,593

Otherwise, createdir locks the Mhead and iterates over the set of mount entries.
The first one with the CCREATE bit set is cloned, and the clone returned. namec
would then use the channel for the first directory mounted with MCREATE to
create the file on it.

The mh field of the cloned channel is cleaned up, and reset to be the mh for
the channel c (i.e. for the first mount entry). If the creation fails and another
walk is tried once more, the walk would use the mh field to lookup names in the
union.

When no mount entry has the create bit set, an error is raised and file creation
is aborted.

Mounting and binding

sysbind() Entry point for the bind system call. Binds a name to another name.

sysmount() Entry point for the mount system call. Mounts a file tree.

• sysfile.c:687,697

Both bind and mount are implemented by calling bindmount. The last param-
eter is an indication that a mount is being done.

sysmount

bindmount() Mounts or binds a file to another.

• sysfile.c:624,629

The third parameter flag controls how the operation behaves. It is a bitmap of
bits defined in lib.h:85,91. The two low bits are used to specify the order for
the new directory. The user cannot request both that the directory be mounted
before and after the previous ones. Besides, only bits in MMASK are valid flags.
MCACHE requests that file data should be cached, and is noted in bogus. Bogus
is being initialized to contain the information about the mount.
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• sysfile.c:631,662

For mount, a file descriptor is supplied as a first argument to bindmount. Must
convert it into a channel. For bind, it is a path, which must be converted to a
channel too.

• sysfile.c:632,633

mounts are forbidden if the noattach bit is set. It is okay to bind because no
new files are brought into the name space, but no new file trees can be attached.

• sysfile.c:635,640

fdtochan takes a file descriptor and returns a channel for it. The last parameter
specifies to add a new reference to the channel. Should an error occur, cclose
would drop the reference. The channel corresponds to the file descriptor being
mounted, and is noted in bogus. On the other end of the channel, there should
be someone speaking 9P, to service file requests.

• sysfile.c:642,650

For mount, a request is going to be issued to the file server to attach its file tree
to our name space. As a server can service several trees, the fourth argument
of mount specifies (as a string) which file tree to mount. The author is ensuring
that the string is in valid virtual memory, and noting the string into bogus.spec.
nameok is used to check that the spec has a valid path (i.e. valid characters);
it is okay if spec contains slashes, hence the 1.

• sysfile.c:652,656

The file tree being mounted is serviced by a remote process which speaks 9P.
The client is going to be the kernel mount driver, which translates procedure
calls into 9P RPCs as the mounted tree is used. The attach procedure of the
mnt driver is used to get a channel to the remote process: First, knowing that the
name for mnt is #M, devtab is searched by devno. devno returns a valid channel
type (an index into devtab) for the mount driver; Second, the attach procedure
for the driver is called supplying the bogus structure just filled up. If you look
at it, bogus contains a channel to the server, the spec for the file tree requested,
and an indication of whether files are being cached or not; everything attach

needs to get in touch with the file server and attach to it. This is discussed
later.

If attach completes without error, c0 is a channel to the (root of the) file tree
in the server, which (after completion of attach) recognizes us as a valid client
and is willing to talk 9P with us.

• sysfile.c:658,662

The first argument for bindmount was the path given to bind; therefore, to
obtain a channel it suffices to use namec to resolve the path into a channel. c0
is now a channel to the file tree being mounted.

• sysfile.c:669,674

The second argument was the path for the directory where the file tree is being
mounted at—or for the file where the new file is being bound at. namec is used
to get a channel c1 for the mount (or bind) point. Note how Amount access
mode is used in namec; c1 would be the very first mount point for arg[1].
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• sysfile.c:676,685

The first line is where the mount is being done; what remains is to close both
channels (mount point/mounted file) because the mount table already holds
what it needs, and to close the descriptor supplied to mount in case it was a
sysmount. The descriptor is closed because the kernel is going to exchange
9P messages on it with the file server; the user would only interfere and cause
problems. But how does cmount work?

sysmount

bindmount

cmount() Adds a mount entry.

• chan.c:226

cmount is called with channels for the mount point (old) and the mounted file
(new), the flags and any spec are passed too.

• chan.c:233,234

It is okay to bind a file to a file, and a directory to a directory; but not for any
other case. Don’t trust users!

• chan.c:236,239

If mounting with MBEFORE or MAFTER, ensure channels are for directories; other-
wise, it has no sense—for files, you only can replace entire file contents.

• chan.c:241,242

Going to write the Pgrp, stop any further lookup/change to the name space.

• chan.c:244,249

Search the name space for any Mhead for this mount point (note eqchan again!).
If an Mhead is found, m points to it; otherwise, m would be nil.

• chan.c:251,269

The comment says it all. The from field of the Mhead is set to the mount point—
and the reference noted by incref. As you now know, the point is not that this
particular channel is set in the from; the point is that a channel with its cname,
its type, its dev, and its qid is sitting at the from.

Lines :267,268 may add a mount entry for the mount point itself to the Mhead.
Guess why?

Exactly, if the mount is not an MREPL, previous contents at the mount point are
still visible; therefore, the channel to the mount point is added as if it was one
of the directories mounted on it. When later the mount entry list be searched,
names originally at the mount point will be searched too. So, the Mhead has
now either the original mount point channel, or it is empty.

newmount()Adds a new mount entry.

• pgrp.c:231,245

newmount simply allocates a Mount entry, and initializes it. The author sets to
i to the channel for the mounted file; and sets the pointer to its Mhead.

mountfree()Releases mount entries.
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• pgrp.c:247,259

The counterpart of newmount is mountfree, which releases references to the
channels for the mounted files as well as the mount entries.

• chan.c:270,275

After the mount entry is locked, there is no need to keep locked the whole name
space.

• chan.c:277

An entry for the new mounted file is created.

• chan.c:278,292

As the mounted file could itself be a union, any mount entry for the mounted
file must be copied to the list of entries for the mount point. The author links
a copy of each such entry starting at the next pointer for the new mount point
being set (nm).

If the mounted file is to replace the mount point, its mount entries are set with
the MAFTER flag. I don’t think this flag is used for anything. The point is that
the Mhead for the mount point has either its previous mount entries, or an entry
for the old contents if appropriate; besides, the new Mount has all entries for
the mounted file linked on it through the next pointers.

• chan.c:294,297

If this mount was an MREPL, cleanup all previous mount entries for the mount
point. mountfree releases all the mount entries.

• chan.c:299,300

Cache the MCREATE flag on the channel, so createdir only needs to look at the
channel.

• chan.c:302,306

If mounting after, skip any previous mount entry at the Mhead, and link the
new mount point (and all trailing mount entries for directories mounted at the
mounted file!) at the end.

• chan.c:307,312

Link the list of new entries before the previous ones. If mount was MREPL and
not MBEFORE, the list was already cleaned up, so a “link before” works too. In
the case of MREPL it could be more efficient not to iterate the list being added to
the Mhead (because that is just to set the last next pointer to nil), but nobody
cared to optimize that. Would the user notice the optimization?

Mounted files can be unmounted by calling unmount.

sysunmount() Removes a mount entry.

• sysfile.c:700

This is the entry point for unmount

• sysfile.c:706,707

The name for the mount point is resolved (note the Amount access) and cmount

is now a channel to it.
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• sysfile.c:709,717

If the first argument is not nil, it specifies the mounted file—in this case the
user wants to unmount that specific mounted file, and not any other one. The
address is checked and namec used to get a channel for the mounted file (note
the Aopen access mode). Should the first argument be nil, cmounted remains
set to nil.

• sysfile.c:726

cunmount undoes the mount. Note, not undomount!

sysunmount

cunmount() Undoes a mount.

• chan.c:329,334

The Mhead is located for the mount point—yes, perhaps a getmount routine
could be created to do the lookup and share these lines among routines looking
up mount entries.

• chan.c:336,339

The user could call unmount on a file with nothing mounted on it.

• chan.c:341,352

If shouldn’t care about unmounting a particular mounted file, mountfree is
called on the whole list of Mount entries. All entries are released and the head
released too. All mounts are undone. The unlock is done in any case after
locking the particular MHead of interest.

• chan.c:354,376

The user cares of unmounting a particular mounted file. So, iterate the set of
mount entries for the mount point. Iteration stops when an entry is found such
that its to channel is eqchan to mounted. (Line :358 checks if the channel used
to talk 9P to the server of the mounted directory is eqchan with the mounted
directory; this can happen with exportfs, as you will see later when you read
about the mount driver). If the entry is found, it is removed from the list and
released. If the list gets empty, the Mhead is released too. If no entry is found,
an error is raised—that “mounted file” was not mounted at the union.

Creating and destroying name spaces

Other routines that operate on name spaces are the ones creating an empty name
space, copying an existing name space and deleting a namespace. That happens as a
consequence of rfork and process death.

sysrfork

newpgrp() Creates a new name space.

• pgrp.c:42,51

An empty Pgrp is created with everything set to nil. As a result, the mount
table hash is empty and noattach cleared. You saw in a previous chapter how
pgrpid was assigned later.
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sysrfork

pgrpcpy() Copies a name space.

• pgrp.c:124,130

pgrpcpy is used to copy a name space into another. Only the source is locked
because the target is still being built.

• pgrp.c:132,159

Hash entries are replicated so that to holds a copy of the mount entries in
from. Note the increfs when structures are shared (Channels are!, because the
namespace is copied, but channels to mounted file systems and mount points
are not!). The loop is simple to understand if you notice that for each pass
(:135) an Mhead f is being copied into a new one, mh, (l is used to build the
list); and at each inner pass (:144), Mount m is being copied into a new one, n.

The field copy of m is set to n (the place it is being copied to). pgrpcpy relies on
pgrpinsert to link mount entries being added through the Mount.order field.
Both copy and order seem to be in Mount just for this occasion—to save the
author the burden of allocating a whole bunch of data structures during a brief
amount of time just to copy the set of mount entries.

pgrpinsert()Inserts a mount into a list ordered by mountids.

• pgrp.c:100,118

What does pgrpinsert do? It receives the pointer to the Mount being copied
and a pointer for the start of the “order” list. If the list is empty, it is set to
the node just copied. If the list is not empty, f advances until its mountid is
bigger than the one for the node copied. So, pgrpinsert is building a sorted
list of Mount entries. The list is sorted in ascending order of mountids.

• pgrp.c:163,167

That was the list for, mountids for the copied entries are assigned in the same
order they were assigned for the original Pgrp. Why?

The mountids can tell the order in which the user issued mount requests that
resulted in the set of Mount entries. That order does not correspond to the
order of entries in the Mhead, because of the MBEFORE/MAFTER flags. The proc

driver services an ns file that returns (when read) commands to replicate the
namespace. It relies on the order of mountids to reproduce the commands in
the appropriate order.

Execute in your Plan 9 box a couple of mounts. Then, using the same window,
go and then execute cat /proc/$pid/ns. More clear now?

closepgrp() Releases a name space.

• pgrp.c:71,97

closepgrp is called to release a reference to the pgrp. When it comes down to
zero, all entries are released. Two locks are needed: devproc uses the debug

lock, although routines using the namespace use the ns lock.
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5.3 File I/O

Once a file descriptor is open, the user can use read(2) and write(2) on it. Although
the actual implementation is done by the server servicing the file, functionality such
like the file offset is kept at the client side and is provided by channels (You already
know what a file offset is, if you don’t, read the “File I/O” section of intro(2)).

That is a fine way the author has to side-step the problem of sharing file offsets
on distributed file systems: by not doing it! Take this as an example of the principle
that, before adding a new feature to your system (e.g. sharing file offsets among
several nodes) you should ask yourself what is the benefit, and what is the cost; then
decide.

The most useful feature of shared file offsets, i.e. allowing several related processes
to consume/produce the same file, is still here:

• Several processes (within the same node) can share a file descriptor and that
means they would share the file offset too.

• The “append only” bit of file permissions can be used to allow several processes
to produce contents for a file no matter the node they are running at. This is in
effect “sharing” the file offset, which is always kept at the end of file for write
purposes.

5.3.1 Read

sysread() Entry point for the read system call. Reads from a file.

• sysfile.c:375

sysread receives a descriptor and a buffer together with its length. It is expected
to fill up the buffer with bytes coming from that descriptor. The bytes can come
from an actual file, or from a file synthesized by a file server, nobody knows.

• sysfile.c:381,383

Buffer addresses are verified and c is set to the channel for the descriptor. The
channel should have the OREAD bit set. Remember that when you open a file,
its mode is cached in the channel. Although permissions are checked by the
file server, when the device specific open routine is called, once the file server
granted access, the mode is kept in the channel. Future access checks can be
done by the client without disturbing the server (although the server is likely
to check that the file id has the OREAD bit set too).

The last 1 to fdtochan requests an incref for the channel. Should the descrip-
tor be closed by a different process, the channel would stay alive because of the
added reference. Forget by now the 1 asking checkmnt to fdtochan.

• sysfile.c:390,396

If the channel Qid has the CHDIR bit (it is a directory), a read should return a
integral number of directory entries (See the read(2) manual page). The buffer
length (n) is adjusted to be a multiple of the directory entry size DIRLEN. Should
the channel offset be not a multiple of DIRLEN (shouldn’t happen) or the buffer
too small to keep even a single entry, Etoosmall is raised.
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• sysfile.c:398,405

If c is a union, read should get entries from all the mounted directories.

It is easy to know if this is a union; remember that the channel installed for the
file descriptor was obtained with namec and Aopen access mode. That means
that any mount point was traversed and mh initialized in the channel to point
to the Mhead.

Thus, if there is an mh in the channel, unionread reads entries from each direc-
tory mounted. Otherwise, the device specific read is called. The device should
honor the convention that a read from a directory should return an integral
number of directory entries. Should the device fail to honor that convention,
the channel offset would be set to a non-multiple of DIRLEN at line :404, and
the next read will fail. The offset for the file is kept by the channel; you already
knew this. For directories, the file offset counts bytes, and not directory entries!
as it should be.

The channel is locked just while changing its offset. Apart from that, it can
be used safely without locking because it is not going to be deleted, nor its
device type is going to change. The real read is done by the device, which
could stand miles away, and there is no guarantee that while this read is in
progress no other read could be made. Nevertheless, the server is likely to
serialize read/write requests for the file.

sysread

unionread() Reads from a union.

• sysfile.c:280

unionread does the work for reading the union while holding a lock on it.

• sysfile.c:291,292

Where to start reading? If you read a union from the beginning to the end, you
should get all directory entries in all directories mounted, as you find them in
the list of Mounts. The problem is that users tend to declare a buffer and read
repeatedly from a file; each read should start past the previous read (remember
offset, right?).

The author could use the channel offset and skip as many Mount entries and
directory entries as needed to fill up offset bytes. However, that would be a
waste because reading a union would be O(n2) regarding the number of entries.
You don’t know how many entries there are at each mount entry. Therefore,
you cannot compute how many entries to skip unless you read them. Can you
think of more alternatives besides re-reading them and doing what is said in the
next paragraph? What are the benefits? What are the penalties?

Instead, an uri (union read index) field in the channel is used to record how
many mount entries were exhausted by previous reads. That saves lots of reads
that are likely to be serviced from the network and not from a local cache. The
loop at lines :291,292 is skipping over already exhausted mount entries.

• sysfile.c:294

Keep on reading while there are mount entries to read from.
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• sysfile.c:299,300

As far as I know, to is only released by mountfree, and that is done with the
lock on the Mhead held. Therefore I would say that in no case to should be nil,
but the check does not hurt anyway.

• sysfile.c:301

Going to read from to, so clone it. Otherwise, the channel would be modified
(e.g. its offset would change). Perhaps in this case it would be more simple
to save the previous offset, explicitly set it up, use the channel and restore the
offset. But that would require that all channels for mounted directories be kept
open all the time; that would mean “use more resources” for the file servers.
Besides, it is a good thing to keep channels for Mount entries untouched; the
author can rely on that to make the code more simple.

Don’t you see any other problem here? You cannot walk on an open file, so the
clone is necessary anyway.

• sysfile.c:305,308

This is not the usual error handling block. Should an error occur, the channel
to the mounted directory is closed and the routine continues at the next entry.
That means that if a file server goes down, only people really using it would be
affected. If a directory serviced by the crashed file server is mounted, its entries
will be ignored due to errors, but remaining entries in the union would still
work. This is the kind of thing that makes a distributed system more reliable:
be prepared to tolerate remote failures bothering the user as few as possible.

• sysfile.c:310

The device specific open for the mounted directory is called. The clone channel
is used.

• sysfile.c:311,314

The author is indeed adjusting offset by hand between successive unioreads.
The offset is saved in the channel for the mounted file; But note how the offset
is used only within the same mounted directory.

• sysfile.c:318,321

If could read something, return that. If more entries remain to be read, the user
would call read(2) again. offset is adjusted before returning so that next time
the read would start where it was left at.

• sysfile.c:323,329

If there are no more in the current mounted directory, nr would be zero and
this code execute. When an error happens, line :307 would jump here too. Just
increment uri to remember that the current mount entry should be skipped next
time. If there are no more entries, break the loop and return 0 (eof). Otherwise,
reset the offset and iterate again, so that the next mounted directory starts
to be read at offset zero.

5.3.2 Write

syswrite() Entry point for the write system call. Writes in a file.
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• sysfile.c:444

syswrite has the same interface of sysread, but it writes rather than reads.

• sysfile.c:453,459

Should an error happen, restore the offset in the channel. The code following
advances offset, yet it could fail. If an error occurs, the write failed but the
offset should be kept untouched. Perhaps this would be more clear if the offset
were simply saved to a variable and restored from there, but the author does
not do so. Guess why?

• sysfile.c:461,462

The only way to write to a directory is by creating or deleting files (also by
changing file attributes).

• sysfile.c:464,467

Advance the offset by the number of bytes to be written. oo keeps the old offset,
and could perhaps be used to restore the initial channel offset on errors, perhaps
not.

• sysfile.c:469

Here is the actual write. The old offset is supplied and the device specific write
would write at that position.

• sysfile.c:471,475

The device could write less than n bytes. This is usually due to an error (e.g.
“disk full”). If the device wrote m bytes, the offset has to account for those m

bytes. However, it was n that was added to it, by subtracting n-m, it gets m

units more than it had before syswrite. Should the device write all n bytes,
offset is kept n bytes beyond its value before syswrite.

Could you guess the reason for the dance around offset? sysread did it in a more
straightforward way, by simply adding n bytes to the offset after the read was done.

I think that the reason is that the author does not want the channel to be locked
during the whole syswrite. Suppose the channel offset is o. For sysread, the worst
thing that can happen if two different processes are reading the same file (through
the same channel) is as follows:

• The first sysread calls read in the device and reads at offset o.

• The second sysread calls read, in the device, which also reads at offset o!

• Both sysread increment the channel offset.

Although this could be considered to be a bug (If I am not missing anything here),
the net effect is not harmful, as the file is kept in a consistent state. Actually, I would
say that the bug is at the application, which didn’t synchronize on its access to the
file.

Now consider syswrite. writes are different in that if they are mixed the
file could be left in an inconsistent state. Suppose again that offset is o, and two
syswrites are being done through the channel. If syswrite worked like sysread

(by adding n to offset after calling the device write), the two writes could overwrite
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the same portion of the file; e.g. the two calls to the device write are performed,
then the offset incremented twice (holding the lock for the offset).

By incrementing the offset in the channel before calling write, any following write
through the same channel would ask the device to write past the n bytes theoretically
being written. Of course that means that the offset must be restored (in case of errors)
by doing arithmetic and not by restoring the initial value. The reason is that if the
first syswrite fails, but in the mean time the second syswrite could really write,
offset should account for the written bytes by both the first and the second syswrite.
If you didn’t understand, try to exercise concurrent syswrites and see how are the
file and the channel left. I think that the approach used in syswrite should be used
in sysread too, but the author may disagree.

Finally, note that when two different channels are used for the same file (applica-
tions could run at different nodes), it is the application responsibility to synchronize.
The CHEXCL bit could help here. As it is said in create(2), if a file is created with
that permission bit set, only one client may have the file open at a time. That func-
tionality is implemented by the file server, which serializes file usage when notices the
CHEXCL mode bit.

5.3.3 Seeking

The seek(2) system call can be used to move the offset in an open file to a desired
position.

sysseek() Entry point for the seek system call. Moves the file offset.

• sysfile.c:535,541

After checking the argument, sseek does the work.

sysseek

sseek() Seeks on a channel.

• sysfile.c:495

The first argument is the file descriptor to seek on. Get the channel. But note
the arg[1] (not arg[0]!) for the first argument.

• sysfile.c:500,501

Should seek be allowed on directories, sysread could found offsets not aligned
to DIRLEN. So the author forbids that.

• sysfile.c:503,504

No seeks on pipes. Other file servers could perfectly ignore seeks as well as they
could ignore file offsets (i.e. they could read always from the very first byte).
But that’s the file server choice.

• sysfile.c:506,509

An vlong (second argument to seek) uses two longs. Now, the arguments
for system calls were assumed to be machine words (longs). These lines use
the u member of the o (offset) union to fill up the two words of the vlong.
Arguments 2 and 3 are actually the second argument (two words) of seek. The
first argument was kept at arg[1] and not at arg[0]. That is because arg[0]
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is kept unused to make the vlong stand aligned to an vlong size boundary
regarding the argument array. That is a good thing if the code is pretended to
be portable, as some machines (not the PC) are very picky regarding alignment
issues. The user-level library stub to issue the system call for seek must honor
the same convention of wasting arg[0] and pushing the vlong in the order in
which it is being extracted here. If the stub (machine dependent) honors this
convention, this code can be kept portable. Now you know also that arg[4] is
actually the third argument for seek, right?

By the way, look /sys/src/libc/9syscall/mkfile:50,61. Understand the
if now?

• sysfile.c:509,528

Depending on type, the n kept at o should be either used as the new offset,
added to the current offset, or used as the new offset but counting backward
from the end of the file. When arithmetic is being done with the channel offset,
a lock is held. Does it makes sense to hold a lock just to assign the offset?

If the offset can be written atomically, it doesn’t matter; but on Intels, in this
case, two words are written as the new channel offset. There is a very thin
critical region here, and the offset could be mangled in the very improbable
case that a sseek writes the offset, while another sseek does too. Just too
improbable, but perhaps that should be fixed.

Stat is used to get DIRLEN bytes with status information from the file, and
convM2D is used to convert that into a Dir structure, from where recover the
length of the file. stat is discussed later, but convM2D is not. The DIRLEN bytes
are in a “standard format” and have to be converted to a native format before
used (byte ordering et al.). The reason for this all is that Plan 9 is a distributed
system.

• sysfile.c:529,531

The final offset value given to the user (line :506 is not needed but it is good
to keep it there for safety). uri is reset, because unionread could use that to
read entries? That couldn’t happen. If this is a directory, seek is forbidden.
However, it is a good practice to set uri to a reasonable value, in case a bug
(no check for directory?) is introduced in the code by future changes.

• sysfile.c:543,560

You may have noticed that there is a sysoseek routine below sysseek. If you
look at system call numbers for seek and oseek (libc/9syscall/sys.h), you
would notice that seek is placed the last one, and oseek is placed near read.
That means that the author had once just the seek system call, and it was
number 16 (OSEEK now). But seek was changed in a so incompatible way, that
the author preferred to keep both the previous and the new version for seek
in place. Old Plan 9 binaries would have the library stub named seek that
does a system call with number 16, and that would call sysoseek. New Plan 9
binaries would be built with the stub which calls seek instead. This is a common
technique to reduce the impact of changes. What sysoseek does is to rearrange
the argument array so that a[0] contains the address of the vlong, and the
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vlong is filled up with arg[1], which means that the change was probably that
seek received a long, and now it receives an vlong. In other words, sysoseek
is adapting the old interface to the new interface, but the implementation of
seek stands the same. Try to learn from this all how to minimize the impact of
changes.

5.3.4 Metadata I/O

Files have attributes, and you already know some. They have permissions, a name,
owner, etc. The system calls reading/updating attributes are stat(2), fstat(2),
wstat(2), and fwstat(2). The former two ones read attributes, and the later two
ones update attribute values. Services like chmod(2) are implemented by doing a
wstat(2) on the affected file. File attributes are read and written in a machine
independent format with DIRLEN bytes per file attribute set. Read stat(5) if you are
curious about file attributes.

Let’s see the system calls that read attributes before, and then the ones that write
them.

sysfstat() Entry point for the fstat system call. Reads file attributes (given a file

descriptor).

sysstat() Entry point for the stat system call. Reads file attributes (given a file name).

• sysfile.c:563,578

sysfstat takes an open file descriptor, and tries to read new values for at-
tributes. All the routine does is to get a channel and call device specific stat

to read the attributes. It is the file server the one filling up the buffer with
information (probably) coming for Dir structures.

• sysfile.c:581,597

sysstat is the same, but takes a file name instead of a file descriptor. namec

does the job of getting a channel, and then the device specific stat routine reads
any attribute. Perhaps both system calls could be folded into one, but it’s not
a big deal.

syswstat() Entry point for the wstat system call. Writes file attributes

• sysfile.c:778,813

The “write attributes” version of the routines simply call the device wstat in-
stead of the device stat. The only thing the author verifies regarding the new
attributes, is that the new name for the file (first bytes in the buffer with at-
tributes supplied) looks fine and has valid characters. That is the only attribute
that would hurt 9P. Should the name be ok, the call to wstat can be done, and
remaining attributes should be checked by the file server.

This is another place where you can see how the design of Plan 9 works well
for a distributed system. File attributes are kept (together with the file) within the
file server providing the files. The system does not impose any particular way of
implementing file attributes. All Plan 9 cares about is that the device should either
be in-kernel, or service 9P requests. Besides, by forwarding all calls related to file
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metadata to the file server process, Plan 9 does not introduce new problems related
to metadata sharing over a distributed system. Yet another point is that the file server
is free to trust you and accept wstat requests; it would do so if you authenticated the
connection to the file server. Saw how all pieces fit together?

5.4 Other system calls

5.4.1 Current directory

The getwd(2) function is not a system call. It is a library function that opens “.”
and calls fd2path(2) on it.

sysfd2path() Entry point for the fd2path system call. Returns the name for a file

descriptor.

• sysfile.c:120,135

sysfd2path receives a file descriptor and a buffer together with the buffer
length. It verifies that the buffer has valid addresses (arg[1] is the pointer
to the buffer and arg[2] is its length). Then it uses fdtochan to get the chan-
nel for the open descriptor. The work was really done when the channel (Cname)
was built. The only thing fd2path has to do is to extract the name (if there is
any) and print it in the user buffer. The channel name is the name used by the
user to get to the file. If the user used a relative path to open the descriptor
given to fd2path, the name of up->dot was used to build c’s name, in namec.

Another useful system call is chdir(2)

syschdir() Entry point for the chdir system call. Changes the current directory.

• sysfile.c:599,610

It simply verifies the name given, and resolves it to a channel using namec (Note
the Atodir access, that was explained before). Then dot for the current process
is set to that channel, after releasing the reference to the previous dot.

5.4.2 Pipes

There is a system call to build a pipe. A pipe is a buffered channel used to let two
processes communicate. Surprisingly, the pipe system call is not a real system call;
I mean that although it is a system call, it uses files serviced by a pipe device to
provide its service. The system call is provided as a convenience, although the user is
perfectly capable of using the pipe device himself without relying on the system call.
Using the device has the good thing that the user is conscious that pipes are provided
using files serviced by pipe, and they could be even mounted through the network.

syspipe() Entry point for the pipe system call. Creates a full-duplex pipe.

• sysfile.c:138,146

syspipe is called to create a pipe (see figure 5.4). The pipe interconnects
two file descriptors so that at one you read what was written at the other.



218 CHAPTER 5. FILES

/

tmp/

pipe/
mounted

Your name space

Files from the pipe device

data1

#|

data

Figure 5.4: Pipes are bidirectional channels accessed through files provided by the
pipe device.

arg[0] is an array with space to put the descriptors numbers in. evenaddr

is used because integers are going to be written into arg; some machines issue
alignment exceptions when you write an integer into a location not aligned to
an even address.

• sysfile.c:147

d holds the Dev entry for the pipe device, which is named #|.

• sysfile.c:148

c[0] is a channel to the root of the pipe device file tree. The name works despite
what the user did with his mount table. Here is where the pipe was actually
setup. If you read the pipe(3) manual page, it says that an attach of the pipe
device causes a new pipe to be created. The pipe endpoints are files named data

and data1 below the root supplied by the pipe device. Different attachments to
the pipe device cause different pipes to be created; files data and data1 would
be different for each attach.

As a side note, Plan 9 does not have the UNIX mkfifo system call, which creates
a pipe with a name in the file system. In Plan 9, all pipes have names, even
those created with pipe(2). Execute “bind ’#|’ /tmp/dir”, and then try to
read/write files in /tmp/dir.

• sysfile.c:150,151

By default, descriptors given to the user are invalid ones. On error, the user
will know.

• sysfile.c:152,161

Preparing to cleanup on errors. Descriptors are closed only if they were open.
fd holds the the descriptor numbers, which are indexes for the Fgrp descriptor
array f->fd.
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• sysfile.c:162,166

Both c[0] and c[1] are channels to the root of the pipe device. So, walk them
to data and data1 to get channels to both ends of the pipe. (why did not the
author choose names “data0” and “data1” for both endpoints?)

• sysfile.c:167,168

Important. In Plan 9, the walk merely changed the channel to point to a
different file, but you have to open the file before doing I/O. The mode is ORDWR
because Plan 9 pipes are bidirectional.

• sysfile.c:169,170

The caller of pipe(2) is unaware of pipe files, the author plumbs the channels
to a couple of file descriptors and pipe is done.

5.5 Device operations

In the code you read before, you noticed that the actual file system work was done by
device specific operations. In fact, you already knew this since chapter 3, “Starting
Up”. Let’s read now the code still unread regarding devices and device operations.

• portdat.h:175,195

The Dev structure (which you already saw), contains the information for a known
device type. Instances of Dev are configured into devtab when compiling the
kernel. The first two fields contain the “device character” and the device name.
You know that kernel devices have names like “#C”, the “C” is at dc; it identifies
the device type. To locate the entry in devtab for a particular device, you only
have to iterate through it searching for an entry with the wanted dc. The name
is mostly for debugging.

Regarding device operations, they correspond to 9P messages (read intro(5)).
When a user process (or the kernel) performs a file operation, that operation
translates into 9P requests (transactions). For example, you know that to open
a file you need to clone a channel, walk on it, and open it. These procedures
(clone,walk,open,etc.) correspond actually to Tclone, Twalk, and Topen 9P
requests. When the file server is within the kernel, the kernel looks up the
device in devtab and calls its implementation for the request (the Dev.open,
Dev.walk, etc.); when the file server is remote, the kernel driver for the file is
the mount driver, which issues 9P messages (Topen, Twalk, etc.). Do you get
the picture?

9P uses the term “transaction” for requests. So, what is each 9P transaction
for? One fine way of learning it is to look at the implementation of each trans-
action for a particular device. I’m going to use the pipe device. While you
read the devpipe.c source, you will learn what is each transaction for; and you
will see how the file dev.c provides default implementations for most 9P oper-
ations. Such default routines are handy when a device has nothing to do (but
for replying to the request) to service a particular 9P transaction. All devices
are file servers, and all file servers are likely to share much code; that shared
code is located into generic utility routines in dev.c.
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5.5.1 The pipe device

Initialization

• devpipe.c:370,389

This is the “entry point” for the pipe device. The Dev structure is linked into
devtab so that the kernel can locate it. The kernel device name is “#|”, among
routines linked here, there are routines corresponding to 9P transactions.

devreset()Generic procedure to reset a device.

• dev.c:62,65

The “reset” procedure is not a 9P operation, but a routine provided to “reset”
the device to an initial state so that its init procedure could be called. You
saw how it worked for ethernet devices while learning how the system boots.
For pipes, nothing has to be done to reset the device; and that is very common.
The dev.c file contains a devreset routine to use as a generic reset procedure.
It does nothing. Instead of declaring an empty routine for each device without
resetting needs, this one is used.

Remember that chandevreset calls all reset procedures for configured devices
at boot time.

pipeinit() Initializes the pipe device.

• devpipe.c:41,50

The “init” procedure is not a 9P operation. It is used to initialize the device
and prepare it for operation. After init is called, other procedures can be
called. For pipes, the configured pipeqsize parameter determines the size of
the queue used by each pipe. Should it be unspecified in the configuration
file, 256K are set for multiprocessor machines, and 32K for monoprocessors.
For multiprocessors, processes at both ends of the pipe can execute at different
processors. It is not a problem if a process is allowed to run until it puts 256K
in the pipe, even if the reader has not read a single byte. By giving more room
to the pipe, the writer can write more without blocking, and the reader can read
more without blocking—even if the other process is not attending the pipe. On
monoprocessors, the author thinks that it is better not to let the process run
for so long before being blocked; after all, the process at the other end of the
pipe has to use the only processor in the system.

devinit()Generic procedure to initialize a device.

• dev.c:62,70

The default implementation (used if the device does not care about init) is one
that does nothing.

You know that chandevinit calls all the init procedures for configured devices
(after chandevreset) at boot time.

Attaching to the server

pipeattach() Attaches to the pipe device.



5.5. DEVICE OPERATIONS 221

• devpipe.c:55,56

The first 9P request issued to a file server is an attach. It attaches a client
to the file server. Any authentication is done here. (see attach(5)). Usually,
attach would just attach to the server’s file tree. However, for devpipe, attach
also creates a new pipe and attaches the client to its corresponding file tree.
To create multiple pipes, you attach multiple times to #|. An string spec is
supplied to attach. That is useful in case a server services multiple file trees,
to select one of them.

• devpipe.c:61

devattach is a generic attach procedure that contains common stuff for attach
procedures. Both the name of the device and spec are given to it.

pipeattach

devattach() Generic code to attach to a device.

• dev.c:72,78

devattach creates a new channel, c, which would point to the root of the device
file tree.

pipeattach

devattach

newchan() Setup a new channel.

• chan.c:67,103

newchan tries to get a channel structure from a free list found in chanalloc (a
channel allocator). Should the free list be empty, smalloc is used to allocate a
Chan, and it is linked into the chanalloc list. Channels in use are linked into
chanalloc.list through the link field of Chan; channels not in use (deallo-
cated) are linked into chanalloc.free through the next field of Chan. The
fid field is given an unique value, different from other channels in the system.
chanalloc.fid contains a number which is incremented every time a channel is
created. So, every Chan in the kernel has its own fid. The FID, represents a file
for the client in 9P. When requests are issued from a client to a 9P file server,
every file in use by the client has its own fid. You will learn more about FIDS
when discussing remote files. By now, note how this kernel ensures that all its
channels have different fids; So, file servers attending this kernel (including the
servers within the kernel) see different fids for different files used by this kernel.
Remaining fields of Chan are reset, but for the reference held by whoever is
allocating the channel.

pipeattach

devattach

• dev.c:79

The channel allocated is to be given to the client (the caller of attach for
devpipe). In the same way the client identifies files by FIDs, the server identifies
files by QIDs. A QID is an unique number within the server, identifying a file
on it. The qid field of Chan holds the QID for the file pointed to by the channel.
In this case, it is a directory and the convention is that directory QIDs have the
CHDIR bit set. The path of the Qid is just CHDIR and its vers is zero.
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• dev.c:80

The type in the channel is used to index back to devtab and obtain 9P proce-
dures for this channel. The index is the one for tc (|) as found by devno.

• dev.c:81,82

The name for the channel is an absolute path for the file serviced. By now, it
is the name for the device root (#| in this case).

• dev.c:83

The channel returned. All this code in devattach is the typical work that all
attach routines must do. dev is giving the author a means to share that code.

pipeattach

• devpipe.c:62,64

The channel is setup, but devpipe has to do its job. First, allocate a Pipe

structure. (exhausted raises an error with the appropriate message.)

• devpipe.c:67,77

Pipes have two queues because they are bidirectional, unlike UNIX pipes. qopen
creates a new queue, using the configured size. Queues are discussed later.

• devpipe.c:79,83

path relates to the path field in the QID. It identifies a file within the server. In
this case, a pipe has two files (data and data1). To give each file an unique path
value, the author increments pipealloc.path every time a pipe is created.

NETQID()Builds a Qid.path from two values.

The macro NETQID takes two values and builds a Qid.path field. The reason for
that is that it is handy to use Qid.path as two fields, one specifying the file and
another specifying the file type. In this case, Qdir is used as the type for the
pipe root directory, Qdata0 and Qdata1 are used for the data files for the pipe.
By looking at this tiny field within Qid.path, devpipe knows which kind of file
is being used. Regarding the other little field in Qid.path, specifying which file
is the QID for, the value is set to 2 × path; even values refer to one data file
for the pipe, odd values to the other. Nevertheless, in this case the CHDIR bit is
kept set (this is the root directory for this pipe).

• devpipe.c:84,85

The aux field of Chan is provided to let the drivers place there their state for
the channel. In this case, the pipe structure is linked there. As there are no
multiple “pipe devices”, the device number is set to zero (another alternative
would have been to use dev to multiplex the device among multiple pipes).

• devpipe.c:86

So, after calling attach for the device, the client (the kernel) has a channel to
the root of the specified file tree in the server.
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Navigating

Once the client has a channel to the root directory, the client can move it through
the file hierarchy by issuing walk requests. More precisely, the client would clone

the channel (to keep the channel to the root intact) and then walk on the clone.
By using walk to move a file descriptor (a channel, with a fid) to point to a different

file in the server (to change its qid), navigation of paths can be done in a more simple
way that it is done by protocols such like NFS [16] or RFS [14]. For instance, there is
no need to read directory entries, nor to check that an entry is there in the client, nor
to open/close intermediate directories. Just one walk per path component suffices.

pipeclone() Clones a channel for the pipe device.

• devpipe.c:89,90

pipeclone is the clone procedure for the pipe device. The kernel calls clone

when it wants a copy of a channel it has. The procedure is supplied the original
channel (c), and the new (clone wannabe) channel (nc). It is expected to return
the cloned channel unless there are errors.

• devpipe.c:94,95

Recover the state for this channel (the Pipe structure), and call the generic
devclone procedure provided by dev.c, which contains common stuff done
almost by every clone procedure.

pipeclone

devclone() Generic clone procedure for devices.

• dev.c:86,110

To get a clone, first ensure that the channel is not open. Should it be open,
somebody could be doing I/O to the file and it is not polite to mess up with
the file in the mean time. As the client in this case is the kernel, if the channel
was open, it would be a kernel bug; hence the panic.

Later, if the caller of clone did not bother to allocate a Chan, devclone does
the work. All fields are copied; but see how a new reference is added for any
Mhead structure pointed to by mh. Besides, Chan links are kept untouched and
the clone has no name. The reason for not cloning the name is that it is likely
to be computed differently by the caller.

pipeclone

• devpipe.c:96,109

The pipe is locked, and a new reference accounted. (Another client is using
this pipe). By the way, the if would never be executed because of the panic in
devclone.

pipewalk() Walks on a pipe device file.

• devpipe.c:147,151

After cloning the channel to the root, the kernel would probably walk on it to
make it point to a different file. As this is almost the same processing for all



224 CHAPTER 5. FILES

devices, devwalk does all the job. The only thing devwalk has to know is how
to obtain directory entries for the file being walked. You will understand this
right now, while reading devwalk.

pipewalk

devwalk() Generic walk procedure for devices.

• dev.c:113

devwalk is a generic walk routine. It performs a walk to name on the c channel.
However, it does not know what is the file hierarchy serviced by the device.
Therefore, it needs some help from the device to learn what names it is servic-
ing. The help comes in the form of an array of Dirtab entries, and a Devgen

procedure.

• portdat.h:197,203

A Dirtab entry contains the name and the Qid for a file. That is mostly what is
needed to scan directory entries. Besides, file length and permissions are found
here too. The directory table supplied to devwalk is a fake one, file attributes
are not kept there; they are kept wherever the file server wants. Of course, it
is convenient to use an array of Dirtab entries for directories, but it is not a
must.

• portdat.h:43

A Devgen procedure is an iterator for directory entries. It receives an array of
Dirtab entries, and an index for a file (third parameter). It is expected to both
update the channel to point to the i-th file in the directory table, and to fill up
a Dir structure with attributes for the file.

• dev.c:118

Back to devwalk, it first ensures that c represents a directory. isdir raises an
error when the QID has not the CHDIR bit set.

• dev.c.:119,120

Should the name be “.”, the walk is already done: c already points to “.”. The
procedure returns true to indicate success.

• dev.c:121,125

Should the name be “..”, it is gen the one who knows how to walk to it. The
channel and the directory table are given to gen. That is why devwalk received
the table, to pass it back to gen, to let it iterate through the table if needed.
In this case, the “file index” supplied to gen is DEVDOTDOT, which is -1. The
convention is that gen should walk to “..” when DEVDOTDOT is given as an
index. How to do that, only the device (pipe in this case) knows.

A Dir structure is supplied to gen. Devgen routines should fill up the Dir with
attributes for the file determined by the file index. Once gen did its job, the
QID is extracted from the just filled Dir, and updated in the channel. From
now on, c points to the file found by gen.

pipewalk

devwalk

pipegen() Directory entry iterator for the pipe device.
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• devpipe.c:112,122

In the case of pipe, the Devgen routine is pipegen (see line :150). Should the
index be DEVDOTDOT, the file is the root of the pipe file tree. Why? Because if file
was one of the data files, the parent is the root; but if file was the root, its parent
is also the root by convention. To fill up a Dir structure with file attributes
(which is a common job for devices), there is a generic devdir routine.

devdir()Fills up a Dir structure.

• dev.c:25,43

devdir simply receives as parameters the qid, name, length, owner, and per-
missions for the file, and puts all that information into the Dir structure. If the
channel has the CHDIR bit set, the mode field of the Dir structure is kept with
CHDIR set. That is the convention for directories. Access time and modification
time are set accordingly with the current time. Every time devdir fills up a
Dir structure, times are updated. The group for the file is set to eve by default.
Of course, should the device supplying the file disagree regarding modification
time or group id for the file, it can update the Dir entry before using it.

• dev.c:126,127

Back to devwalk, the name is neither “.” nor “..”. The procedure iterates
through the given tab to find the file. Starting with directory index zero, it
calls gen with successive indexes until gen returns -1.

• dev.c:128,130

The convention is that gen should return -1 when the index given is not valid.
In this case, that means that the index is past the entries in the directory: there
are no more entries.

• dev.c:131,132

gen returned zero. That means that the entry does not exit, however, the index
is valid and no major error occurred. So, continue iteration.

• dev.c:133,138

A valid entry was found and gen filled up dir with attributes for the file. If
the name in dir is the name to walk to, the procedure uses the QID for the file
(dir.qid) as said by gen to make the channel point to that file. A return of
true from devwalk means that the walk could be done. Iteration is continued
(linear search) until the entry is found.

• dev.c:141

Just safety. Be sure that if you reach this line, a false is returned to say that
devwalk couldn’t walk to the file.

• devpipe.c:124

In the case devwalk was called for a file not being “.”, nor “..”, you saw how
it called gen (pipegen in this case) to iterate. In this case, this line is reached,
and tab corresponds to pipedir (see line :150).

• devpipe.c:34,39

pipedir has Dirtab entries for a typical pipe root directory. It contains two



226 CHAPTER 5. FILES

entries (for two files) named “data” and “data1”. Their Qids are Qdata0 and
Qdata1, but note that these are actually “file types” to build the real Qids.
Their mode is 0600, which makes sense for pipe data files, and their length is
set to zero—just to give them a length. NETID()Extracts the id from a Qid.

• devpipe.c:124,126

NETID takes the Qid’s path, and extracts the file id from the Qid path. Re-
member that the Qid for a pipe file keeps both the “type” and the “id” for the
file. Pipe services multiple file trees (one per pipe), although for its clients, it
is servicing just one. The way pipe has to distinguish among different pipes is
to use the Qid path. Qid.path must be unique for the three files used for each
pipe. Let’s revisit how are Qid paths built:

– The root directory for the n-th pipe has (2 × pipealloc.path; Qdir) as
Qid.path. (cf. line :83).

– The 0th file in the pipe directory has (2 × pipealloc.path; Qdata0) as
Qid.path. (cf. line :124).

– The 1st file in the pipe directory has (1 + 2× pipealloc.path; Qdata1) as
Qid.path. (cf. lines :124,126).

Just Qdir and Qdata would suffice to distinguish among different files; because
the “id” is different for data0 and data1. Nevertheless, the author thought it
was convenient to have two types for the data files.

• devpipe.c:127,128

No table given, or index out of range. Return failure.

• devpipe.c:129

tab points now to tab[i], the entry for the i-th file.

• devpipe.c:130

The Pipe state for the file is recovered from the channel.

• devpipe.c:131,141

The index given by devwalk, selected an entry in pipetab. For each entry
(data0/data1) set the file length reported as the length of the queue associated
with the file. qlen returns the queue length. The default should never execute
because the index was within range and pipetab has two entries. But just in
case something changes, the routine does its best by looking at the length field
for the file in the table.

• devpipe.c:142,143

Fill up the Dir for the file. The length was computed, the name came from
the pipetab entry for the file, as well as permissions came from there too.
Regarding the Qid, vers is set to zero (the author does not care), and path is
set by placing in it both the Qid.path from the table (actually the file type!)
and the file id.
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Opening pipes

The client using devpipe, after attaching to it would clone the channel to the root
and walk on it. Once the channel is positioned into the file of interest, the device
open routine is called. This pattern of usage is common in 9P. open(2) would issue
multiple requests on its own (attach?, clone, walk, open).

pipeopen() Open procedure for the pipe device.

• devpipe.c:181

pipeopen is the open routine for devpipe. It receives the channel being opened
and the open mode. It should check that permissions allow the requested open
mode, and prepare the file for I/O.

• devpipe.c:185,192

A directory is opened (the root), only OREAD mode is allowed. If the mode
is OREAD, it is noted in the channel for further use (by I/O routines) and the
channel is flagged as open.

• devpipe.c:194

An open for a data file. A process is about to read/write one end of the pipe.
p is the Pipe structure for the channel.

• devpipe.c:196,203

The process is going to use one queue. The qref array keeps reference counts
for both queues—because several processes could open the pipe files, and these
files should stay as long as at least one process is using them.

• devpipe.c:206,209

openmode checks that omode has valid bits on it. The offset is set to zero so
that any read/write would be done at the beginning of the file.

In fact, the pipe device ignores offsets while servicing reads and writes because
pipes are streams of bytes; as you learned before, a file server is free to ignore
offsets in read/write requests. The only thing that matters is that the server
should offer a consistent view of its files.

There is also a generic open routine provided by dev.c. Let’s look at it.

devopen() Generic open procedure for devices.

• dev.c:212,251

The gen routine is used to iterate through the directory, searching for the file
being opened. When the entry is found (same path in Qid), the information
found in the Dir structure filled up by gen is used to check permissions (you
know: “rwx” bits for owner, group, others). The routine is doing nothing but
for checking that the open can be done and to initialize channel flags and mode
accordingly.

devcreate() Generic create procedure for devices.

devremove() Generic remove procedure for devices.
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devwstat() Generic wstat procedure for devices.

• dev.c:253,257

pipe uses devcreate as the routine for file creation. It simply denies permission
to create files.

• dev.c:287,297

The same happens for remove and wstat (9P transactions for removing files
and updating attributes).

Read/Write

pipewrite() write procedure for the pipe device.

• devpipe.c:306

pipewrite is the write procedure for devpipe. It mimics the write(2) system
call.

• devpipe.c:310,311

Interrupts should not be disabled. Looks like the author was bitten by a bug
supposedly caused by calling pipewrite with interrupts disabled, and the au-
thor preferred to ensure that wouldn’t happen.

• devpipe.c:312,317

The code could be like it is, without line :314. However, if CMSG is set in the
channel flag, the channel is being used to talk to a file server servicing a mounted
file tree. In this case, the system would allow the write without posting a note.
Why is this necessary? I think that the write could be done by a server to reply
to a request issued by the client. Now, the client could have gone and its side
of the pipe closed. It is not fair to kill the server with a note in this case.

• devpipe.c:319,336

qwrite does all the job. Since only OREAD is allowed when opening a directory,
this must be a pipe data file—there is a panic just in case. By the way, qwrite
would block the process when the queue is full because the reader is slow.

piperead() Read procedure for the pipe device.

• devpipe.c:265,282

piperead is the routine called for reading pipe files. Its interface is like read(2).
A generic routine devdirread is used when the read refers to a directory, and
qread is the one doing the job of reading from a pipe (data file). qread would
block the process is there is nothing to be read in the queue—because the writer
is slow.

A write to data0 writes to q[1], and a read from data1 reads from q[1]. Thus,
what is written to data0 is read from data1—and the other way around.

piperead

devdirread() Generic read procedure for the device directories.
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• dev.c:185,210

devdirread is called by piperead to read from the (root) directory. It reads
an integral number of directory entries each time. Line :191 determines the
number of entries (each DIRLEN bytes) read so far. The loop controls that at
most n bytes are placed in d, and also increments the file index for gen. Gen fills
up dir, and convD2M places dir information into d in a machine-independent
format.

There are two read/write routines that do not correspond with 9P requests. They
are bread and bwrite. Their purpose is to read and write blocks of data. By using
specialized versions of read and write that operate on blocks, block I/O can be made
more efficient. This is mainly used by the code in /sys/src/9/ip, which reads/writes
blocks of data received/sent through network devices.

pipebwrite() Block write procedure for the pipe device.

• devpipe.c:338,368

The routine should write the block bp. It is like pipewrite, but qbwrite is used
instead of qwrite. The ignored long argument is an offset—ignored because
pipes are FIFO.

devbwrite() Generic block write procedure for devices.

• dev.c:276,285

There is a generic devbwrite, which simply adapts the request to the device
write procedure. It also releases the block (because the block is usually allo-
cated by the source of the data and deallocated by the drain of the data). Pipe
does not use this procedure.

pipebread() Block read procedure for the pipe device.

• devpipe.c:284,299

The routine is like piperead, but uses qbread (not qread) to read pipe data
files. To read the directory, a generic devbread routine is used.

devbread() Generic block read procedure for devices.

• dev.c:259,274

The generic devbread allocates a Block, (releasing it on errors) and calls the
device specific read routine to fill up the Block. In the case of data files, the
block comes from the queue. This is simply an adaptor to the device read

routine.

Attributes

pipestat() Stat procedure for the pipe device. Gets file attributes.

• devpipe.c:153,175

stat is the 9P request to obtain file attributes. wstat allows to update attribute
values, and you now know that this is not allowed for pipe files. Depending on
the Qid, devdir is called to fill up DIRLEN bytes into db. The structure is the
same that is obtained by reading the directory. Qlen is used to provide lengths
for pipe data files.
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devstat() Generic attribute read procedure for devices.

• dev.c:145,152

There is a generic devstat routine (not used by pipe). It uses again a Dirtab

and gen to locate the file of interest (same Qid), and fill up the stat buffer (db)
with file attributes as filled up by gen in dir.

• dev.c:153,171

The index was out of range—which is the case when the channel points to the
directory and not to any file on it. If the Qid is for a directory, a name is given
to it when the channel has no name, the name is set to “/” when the channel
name is “/”, and if the channel name is not “/”, the name is set to the last name
after the the last “/”—i.e. elem is the file name for the path in the channel
name. If it was not a directory, it is a true error.

• dev.c:174,181

The file was found—Qids match.

5.5.2 Remote files

What you have read about file systems works without depending on where is the file
server (where are the files). The kernel (e.g. for Fgrps and the Pgrps) use channels
to represent files being used, and channels use device operations to implement the
functionality needed to operate on files. Until now, you have seen how all device
operations are called by procedure calls dispatched by the device type. For remote
files, the system works mostly in the same way; the mnt(3) device implements 9P
operations for remote files.

Initialization

mntreset() Reset procedure for the mount driver.

• devmnt.c:64,71

mntreset is the reset procedure for mnt, (:920,939). It is initializing the
mntalloc global, which is an allocator for Mnt structures (:portdat.h:241,253)
used to service remote mounts (Everything else in mntalloc was set to zero by
the loader). Besides, it calls cinit to initialize a cache (caching is discussed
later).

There is no init procedure (the generic null one is used).

Attach

sysmount

bindmount

mntattach() Attach procedure for the mount driver.

• sysfile.c:652,656

When mount is used instead of bind, the file tree bound is serviced behind a
file descriptor. That means that 9P transactions must be issued through its
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channel to operate on the file tree. The file server can be a local user process, a
remote user process, or a remote kernel used as a file server; for the local kernel,
it doesn’t matter.

Remember that bogus contains a channel to the server, the spec for the file tree
requested, and an indication of whether files are being cached or not; everything
attach needs to get in touch with the file server and attach to it. The casting is
needed because attach should receive a character string, but mntattach knows
it receives an structure and not a string.

By the way, mount is the only way to attach the mount driver, as attach is
forbidden from “#M” paths. Every time you attach to it, you are attaching to
one particular file tree, which is in fact serviced through the network.

• devmnt.c:73,86

mntattach knows it receives a bogus structure and recovers it from the pre-
tended string spec. Perhaps a common header (or a comment saying who else
is using the structure) would help to prevent errors. The c channel corresponds
to the file descriptor being mounted. A 9P server sits at the other end of the
channel.

• devmnt.c:88,109

The mntalloc list is scanned, looking for a entry (m) with the same channel and
a non-zero id. That list contains entries used to handle each mounted file tree.
If such an entry is found, it is locked and checked to be still valid (ref). The
checks for id and c are repeated because the lock was not held before—to avoid
blocking other processes using the entry.

This loop is an attempt to share the entry (when the same file is being mounted
several times); In this case a reference is added, and another channel obtained
using mntchan. That channel is the one to be used for the root directory of the
file tree. The procedure mattach issues a 9P attach transaction to the remote
file server, and the CACHE flag is cached in the channel. You will learn soon
how mntchan and mattach work. Noticed how eqchan is not used to compare
channels in mntalloc? The mount driver is interested on finding an entry with
exactly the same channel structure.

• devmnt.c:111,124

No entry with the same channel, so allocate a new entry from either the free list
of mntalloc or from fresh new memory (the list used now is mntfree and not
list). A new id is allocated and placed into the Mnt structure created. Can
you see how id is non-zero, and mclose resets it to zero? The id check at :90
is for safety.

• devmnt.c:127,131

Starting to initialize the Mnt for this mount. The channel used to talk to the
server is recorded in m->c (So the loop used above to locate an Mnt entry was
searching for an entry using exactly the same 9P connection to the server). The
flag CMSG in the channel states that it is being used to talk to a remote file
server. Although the descriptor supplied by the user was closed by sysmount,
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it could be duped, so the flag in the channel is needed to prevent interferences
in the 9P conversation.

Remember the check at sysfile.c:85,89? When fdtochan is used to get a
channel for a file descriptor, and it is being used by the mount driver, an error is
raised. The mount driver is very jealous about this channel. That happens only
when a true chkmnt is given to fdto2chan, which happens when sysread9p,
sysread, syswrite9p, syswrite, sseek, and sysfwstat call fdtochan. Rou-
tines reading, writing or updating the state are forbidden for channels used by
the mount driver.

• devmnt.c:132,140

blocksize in m is set to the size for data blocks exchanged between the mount
driver and the file server. Unless the spec string given to mount was mntblk=n,
it is set to MAXFDATA. In this case spec is set to null, not to disturb the remote
server. Perhaps a writable file for the mount driver would be better than using
the spec string; although the method used by the author allows different block
sizes for different mounts.

• devmnt.c:141

All flags are kept in Mnt flags, but for MCACHE, which is kept in c. Surpris-
ingly, only the MCACHE flag was set in bogus.flags by bindmount. Therefore,
m->flags is now zero.

• devmnt.c:143

Right now, the channel is still there, but when bindmount closes it it could go
away. This new reference keeps the channel alive.

• devmnt.c:149

mntchan returns the root channel to be given to the caller.

sysmount...

mntattach

mntchan() Returns a channel to the mount driver impersonating the channel to

the remote file tree.

• devmnt.c:185,196

It uses devattach to build a channel for a directory in the #M device. This is
very important. The user thinks it got a channel to the remote root directory,
but he got a channel to the mount driver instead. The real channel to the server
(not to the root, but to the server) is kept by the mount driver, as shown in
figure 5.5. An important thing here is that dev in the channel built is set with
an unique id. This id is used by the mount driver to recognize that mount
entries remain valid.

• devmnt.c:150,157

Note how to cleanup on errors, the “cclose” is done. The recursive call would
be to mntclose, which would try to use the channel to send a Tclunk request.
That would make no sense at this point. But perhaps a channel flag could be
added to the channel so that mntclose would do nothing to a channel not yet
set.
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Chan

Channel given to
the client (root of the
remote file tree).

type
QID

mchan
mqid (for r)

(for r)
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Channel to 
the server

9P

r
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Server’s tree

Mnt

mntalloc.list c

Mnt device

Figure 5.5: The mount driver sits between the server and the client. The kernel uses
channels serviced by the mount driver. Requests for these channels are implemented
speaking 9P with the file server.

• devmnt.c:159

Starting to speak 9P. mattach performs a 9P Tattach transaction (client side).
If it finishes without raising an error, the attach RPC has been done, m->c is a
channel to the server, and c is a channel to the mount driver.

• devmnt.c:170,177

If the if is entered, you knows that:

1. The channel to the server (m->c) is a channel serviced by the mount driver.
You know this is the case because the channel to the server has as type

the index for the mount driver in devtab.

2. The file server at the other end of the channel is exportfs. Tricky!!. You
know this because in /sys/src/cmd/exportfs/exportsrv.c:574, exportfs
is clearing the CHDIR bit from the QID for the served directory (c->qid).
That should never happen because the server is servicing its root directory.
However, exportfs clears that bit, and the mount driver notices that, does
this hack, and repairs the missing bit at line :172.

Perhaps it would be more clean if the Rattach reply could carry a string
of information back to the client—in the same way the Tattach carries an
spec string. Nevertheless, the protocol and the code are cool, aren’t they?

What is the hack doing? Well, the Mnt entry for c is closed, i.e. not going to
behave as if the remote c was mounted through m->c, which it was. The mntptr
(which points to the Mnt structure) of the client channel (c) is set to point to
the one linked at the server channel. That means that mc->mntptr is going to
be shared among all file trees serviced through mc.

Should this be removed from the kernel, requests for the tree being mounted
would be translated to 9P transactions by this mount driver, and such transac-
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tions would be written to c->mchan (which is m->c here). Now, to write the 9P
request r to a file serviced by the mount driver, a 9P request s has to be issued
to m->c->mchan, with the r request being the data. That makes no sense, when
you could speak 9P right to the final server1. Hence the hack. This is one of the
few places in the kernel source when a trick which is not clearly exposed in the
system interfaces is being used to prevent the system from doing a silly thing.

Now, what if mc is remote (serviced by the mount driver), but the server is
not known to be exportfs? The author cannot assume that the remote server
would multiplex its connection among trees mounted from it, so the best the
mount driver can do is to use 9P requests (to the server of the channel for the
file server) to write 9P requests for the channel (to the file server).

sysmount...

mntattach

mattach() Uses a Tattach to attach to the server file tree and initializes the

channel to point to its root directory.

• devmnt.c:198,210

We still have pending the discussion of mattach, which allocates an Mntrpc

structure to manage the RPC done by the mount driver. The structure is
deallocated on errors.

• devmnt.c:8,22

An Mntrpc contains among other things two Fcall fields (request and reply)
which are the request message and the reply message for the RPC (see fcall.h).
Those are 9P transactions and replies.

• devmnt.c:212,215

The request is a Tattach. The fid for the Tattach is the fid in c. Each kernel
channel has its own fid (chan.c:81), so there is no ambiguity regarding which
client “file descriptor” would point to the root of the remote tree. The user
name is that of the current process (can user contain null characters?).

• devmnt.c:216,218

Fields ticket and auth are set by authrequest to authenticate the client
to the server. m->c->session is the structure used to maintain authentica-
tion/encryption information for the session maintained through the channel.
m->c is the channel to the server, which is not c, that is the channel for the
client. The value returned by authrequest is used later by authreply to check
that the reply received for the request is valid and not a fake one. Should it not
pass the security check, authreply raises an error. mountrpc does the actual
work of sending the request and receiving the reply.

• devmnt.c:220,226

The channel QID is set from the qid in the reply (so that it really points now
to the server root file). Besides c.mchan is set to the channel for the server,
now that it is attached. Future requests for c would use its mchan field to issue
RPCs. mquid also holds the QID for server’s root directory.

1The thing is even worse because exportfs is used to export part of the local name space to other
processes, and it is likely that exportfs would lead to more 9P requests to service its file tree.
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RPCs

But how is the RPC done?

mountrpc() Performs an RPC for a mounted file tree.

• devmnt.c:607,631

mountrpc issues the request in r and receives any reply for it. It is actually a
wrapper for mountio, which does the job. First it sets the reply tag and type
to poisoned values, in case anyone checks them before the reply arrives. Then
mountio does the job. Finally, the reply type is analyzed: an Rerror causes a
raise of the error reported (note that strings are portable!); an Rflush interrupts
the request; an Rattach (Tattach+1) returns without errors; and everything
else should not happen.

mountrpc

mountio() Performs I/O to issue a 9P request and receive the reply.

• devmnt.c:634

m is used to manage the remote mount point and r is the RPC to be done.

• devmnt.c:638,646

The while restores the error label after an error is raised. The loop body
executes each error, (unless the error is re-raised by nexerror). Ignore this by
now.

• devmnt.c:648,652

All RPCs r keep in r->m a link to the mount entry they are for. Besides, the
mount entry keeps in queue a lists of RPCs being done. The list is done through
the list field of Mntrpc, as shown in figure 5.6.

• devmnt.c:655,657

The server and client machines could have different architectures. convS2M

packs the request into the buffer at rpc, in a machine independent format.
The buffer at rpc is allocated by mntralloc with MAXRPC bytes, which is the
limit for a message. The panic shouldn’t happen, but just in case 9P is changed
and convS2M is not updated, let the author know.

• devmnt.c:658,664

Some times, the channel used to talk to the server is local (e.g. the file /srv/kfs
is a channel to the local KFS server). In this case, the channel m->c is not
serviced by the mount driver and the request would be serviced by the device
specific write (:662). But some other times, the channel used to talk to the
server may correspond to a file which is mounted using the mount driver (e.g.
/n/remote/tmp/pipe). If the channel to the server corresponds to a mount
driver channel, the rpc buffer is written using mnt9prdwr. For mount driver
channels, the device specific write is not called. Why does the author do so?
The answer relates to message sizes as you will learn later.

• devmnt.c:665,666

stime keeps the time when the request was sent. The Tattach is now traveling
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file tree, represented by Mnt.

to the file server and stime has the current time. n bytes were written to the
server.

• devmnt.c:669,681

The routine did set rip (reader in progress) to nil before. So, unless other
process changed the state in m, rip is nil and the loop is broken at line :672.

If no process is reading a reply for this mount point, the current process is the
one reading. From now on, other callers of mountio would notice that rip is
not nil, and enter the loop. They will stay in the loop until the process in rip

stops reading. Instead of spinning all the time, sleep is used to block them
until rpcattn says that r->done or there is no r->rip process. So, processes
awaiting for RPC replies sleep and read one at a time. r->r is the Rendez used
to sleep. In figure 5.6 you can see a process servicing reads while another is
awaiting its reply.

• devmnt.c:683,686

done is set to false by mntralloc, it is set to true when the RPC should be con-
sidered to be done. So, unless the RPC finished, call mntrpcread and mountmux.

The first process doing an RPC on m is calling mntrpcread and mountmux, and
remaining processes are looping/sleeping waiting for their replies.

mountrpc

mountio
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mntrpcread() Reads from the 9P channel until gets a reply message.

• devmnt.c:692,711

mntrpcread loops until a valid 9P reply message is read from the channel to the
server. As it happen with write, mnt9prdwr or the device specific read is called
depending on whether the channel to the server is a mount driver channel or
not. Any reply message is read into the rpc buffer of the Mntrpc—now that the
request was sent, the buffer can be reused for the reply. Lines :708,709 call
convM2S to convert the machine independent reply found at rpc into a reply

structure. If the conversion fails (the reply message is not a 9P message), the
loop continues and another reply is read. The mount driver is ignoring invalid
messages. Once a valid reply is read, the return executes and mountmux is
called.

mountrpc

mountio

mountmux() Multiplexes the 9P channel among multiple RPCs.

• devmnt.c:728,763

mountmux multiplexes the channel to the server among multiple processes doing
RPCs. m->queue was a list of ongoing RPCs through m. The list is searched
for an RPC whose request had the tag found in the reply just read. If you
read intro(5), you know that 9P replies carry the tag of their request message.
If no RPC in the list has a request with the same tag of the reply, no one is
waiting for this reply. In this case the routine completes without doing anything,
and mntrpcread would run again and read another reply message into the rpc

buffer. The reply (without a request) has been ignored.

• devmnt.c:740,749

If the reply message is for the RPC being done by the process that called
mountmux (the first reader), r would be equal to q (the node with matching
tag). If r and q differ, the reply is for some other process. In this case, the
rpc buffer for the current process is exchanged with the rpc buffer of the RPC
replied. Besides, the reply structure for the process replied is set to point to the
reply structure containing the unpacked reply. In this case the current Mntrpc
has an empty buffer in rpc to receive another reply.

This buffer exchange is very important to avoid fragmentation and also to im-
prove performance. The author tries not to allocate/deallocate buffers unless it
is really necessary.

• devmnt.c:750,759

done is set in the Mntrpc whose reply arrived. If it was another process, line
:757 would awake it; then it would notice that done is true and pick up its
reply. If it was the current process, our done is set.

mountrpc

mountio

• devmnt.c:683,686

If the reply was for us, the loop breaks. In any other case, the process keeps on
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reading from the channel and servicing replies to waiting processes (including
himself).

Can you see how when one process has to do some work for himself it tries to
do useful work for others too? It would be silly if all processes were spinning
trying to read from the channel.

• devmnt.c:675,679

Another processes awaken would check its RPC done field. Should it be true,
the process has a reply in r, and mountio returns. Should it be false, the process
re-enters the loop and sleeps again if there is another process reading from the
channel (rip). If there is no other process reading (the reader got its reply and
its mountio returned), the process breaks the loop and becomes the channel
reader, servicing replies for others.

• devmnt.c:687

Unless the reply to the RPC was serviced by another process (a channel reader
on our behalf), mntgate is called.

mountrpc

mountio

mntgate() Elects a new reader for the channel.

• devmnt.c:713,726

What happens is that we were the channel reader (servicing requests to others),
but our reply finally arrived and we are leaving mountio. Another process must
read the channel, if other RPCs are pending. mntgate awakes the first process
found with a pending RPCs in the list. It becomes the reader (see line :719).

mountrpc

mountio

• devmnt.c:638,646

Should an error occur during all this time, the process calls mntgate (if it’s the
reader) to let other process take its place, because due to the error the current
process can abort the RPC and return. But how are errors handled?

Consider that an Emountrpc is raised at line :663, after getting back to :638,
the loop body is entered. The error is not Eintr, therefore an mntflushalloc

is done on r.

mntflushalloc()Allocates a Flush request for a failed RPC.

• devmnt.c:769,784

mntflushalloc allocates an Mntrpc for a Tflush message, and links r (the RPC
suffering the error) in the flushed field of the Tflush Mntrpc. A list of flushed
requests is being built through the flushed field of Mntrpc. The field oldtag

of the Tflush is set to the tag of the RPC failing. If the failing request was a
Tflush, the RPC failing was the one that caused the Tflush.

• devmnt.c:646

So on a error, mountio runs again with the request being a Tflush. If an RPC
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fails, a Tflush is sent to the server. If the Tflush fails, another Tflush is
sent. All those Tflush are for the (oldtag) RPC that failed. If the Tflush can
proceed (the server is running and serviced the Tflush), either :677 or :689

call mntflushfree.

mntflushfree()Releases flushed RPCs

• devmnt.c:793,808

mntflushfree removes from the RPC queue (mntqrm) any undone RPC flushed
by r (a Tflush), and releases the structure (mntfree). The reply is set to
Rflush, because mntqrm sets the done field of the RPC to true—the affected
process might check done in the mean time, and it should notice that no actual
reply arrived.

• devmnt.c:641,644

Should the first Tflush abort with an error raised, another is sent. New Tflush

requests are sent until an Rflush is received or an Eintr error is raised. In
the RPC is interrupted, any flush request is released and the interrupt error
re-raised.

mountrpc

• devmnt.c:616,631

The RPC finished (note the Rflush case). Only if the transaction got a non-
error reply, mountrpc finishes without raising an error.

Using remote files

After an attach is successfully done, the client has a channel to the mount driver,
which from the client point of view is pointing to the root directory of the remote
file server. Typically, the next things done by the client are clones and walks to
navigate the mounted tree.

cclone

mntclone() Clones a channel for a remote file.

• devmnt.c:228,229

The clone done by the client is done by cclone, which calls to the device
specific clone: mntclone.

mntchk()Checks that the file is still mounted.

• devmnt.c:235

mntchk (devmnt.c:883,897) checks that c->mntptr points to an Mnt whose id
is not 0 (still allocated) and is less than the dev in the channel. Line :192 sets
the “device number” for the channel to the Mnt id. If the check fails, either the
Mnt has been released (id set to zero at :402) or it has been both released and
reallocated for a different mount (whose id would be bigger than the copy kept
in the channel dev.

All mount driver device operations for a remote channel use mntck to check that
the connection is still alive.
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• devmnt.c:236

The routine allocates the RPC structure, as it was done for mntattach.

• devmnt.c:237,240

clone can be called with or without the “cloned channel”, so better be sure
that mntclone has an nc.

• devmnt.c:241,246

Release the RPC on errors, and nc if it was allocated by mntclone.

• devmnt.c:248,251

A Tclone is sent and the reply is received (or an error raised). newfid is
the FID for the clone, which was set when the clone channel was created.
devclone()Generic procedure for cloning channels.

• devmnt.c:253

devclone does the job of copying the state in c to nc. The RPC was just
to let the file server know that newfid should be understood as another “file
descriptor” pointing to the file where fid was pointing to.

• devmnt.c:254,255

What? That was done by devclone, but it does not hurt. As another channel
(nc) is using the Mnt for c, count one more reference. Even if unmount is used,
Mnt will not go away until its reference count gets down to zero—because all
channels going through it have been closed.

• devmnt.c:257

To keep the compiler happy—alloc is used even if no error is raised. Otherwise,
the compiler might issue a warning.

walk

mntwalk() Generic walk procedure for devices.

• devmnt.c:263,285

Regarding walks, you now how the global namec and walk routines work. When
the device specific walk routine is called, mntwalk executes. It issues a Twalk

RPC, so that c would refer to the file named name, within the directory pointed
to by c–i.e. within the directory for c->fid. After the Twalk is sent, and an
Rwalk is received, the QID from the Rwalk is set in the channel. This kernel
now knows that c points to the file represented by the new QID, and the server
knows that c->fid is now pointing to that file.

File attributes

mntstat() Stat procedure for remote files.

• devmnt.c:287,307

mntstat issues a Tstat transaction when an stat operation is done on the
remote file. It works like clone or walk. The different thing is the call to
mntdirfix with both the attributes read for the file, and the channel for the
file.

mntdirfix()Fix attributes for remote files.
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• devmnt.c:900,909

mntdirfix changes some attributes read, to reflect that the file is serviced by the
mount driver. In particular, it writes in the last two ‘shorts’ of dirbuf, the letter
for the device (M) and the mount id. Although the stat(5) manual page states
that those two shorts are for kernel use, they are used (libc/9sys/convM2D.c)
to report the device type and device number for the file (Can you guess where
does the “M” listed by ls come from?)

mntwstat() Wstat procedure for remote files.

• devmnt.c:439,457

mntwstat is also similar, but it issues a Twstat instead.

Open and close

mntopen() Open procedure for remote files.

• devmnt.c:309,337

The QID is set from that in the reply (because the server could have created a
new file), the offset is reset to zero, and the channel is flagged to be open. Lines
:333,334 report to the cache that the file is in use for I/O—if the file is to be
cached. That is to give the cache an opportunity to invalidate old versions for
the file and do other things.

cclose

mntclose() Close procedure for remote files.

• devmnt.c:427,431

This is the device operation called by cclose when the last reference to the
channel goes away. It issues a Tclunk request to let the server know that the
fid is no longer in use.

cclose

mntclose

mntclunk() Issues a clunk RPC.

• devmnt.c:368,388

There is no close in 9P. mntclunk issues a Tclunk, or a Tremove is the file is
being removed (devmnt.c:433,437). Seems that mntclunk is being reused to
issue both kinds of transactions.

Read and write

The actual device specific routines are mntread and mntwrite, but if you look at
read9p(2), you will notice that to encapsulate 9P on 9P without problems because
of the maximum message limit, read9p and write9p have to be used to write 9P
requests to a file serviced through 9P.

sysread...

mntread() Read procedure for remote files.
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• devmnt.c:466,500

A read to a file serviced by mount driver leads to mntread as the device specific
read procedure. cache is set if the channel has the CCACHE bit set (i.e. if it
comes from a tree mounted with MCACHE) and it is not a directory. Caching
file contents is one thing, but caching directory entries is one of the things that
makes distributed file systems complicated (race conditions, too much locking
for clients using entries etc). Plan 9 sidesteps that problem by not caching
directories. After all, the design of 9P (i.e. walk) allows the client to walk
paths without needing to cache directory entries. This is also good in that if
the file server changes its mind regarding which files exist, its clients would know
without any problem.

If the file is cached, the read is serviced from the cache by cread. If the bytes
cached (nc) do not suffice to satisfy the read request (n bytes), a Tread is issued
to read the bytes not kept in the cache. cupdate updates later the cache with
the bytes read by the Tread. Besides, the device type and number for any
directory entries read are set by calls to mntdirfix. By making directory reads
return an integral number of directory entries, processing of entries is greatly
simplified. Compare the routine with the one needed in case Tread could return
any number of bytes.

syswrite...

mntwrite() Write procedure for remote files.

• devmnt.c:508,512

A write is serviced by issuing a Twrite request. Both Treads and Twrites are
serviced by mntrdwr. The author reuses code as much as he can: reads and
writes have much in common.

syswrite...

mntwrite

mntrdwr() Issues Tread/Twrite RPCs.

• devmnt.c:552,565

either a Tread or a Twrite (type) on the channel. Note the checks for the
mount point and caching.

• devmnt.c:566,602

The routine loops sending Treads/Twrites, with the buffer for the request being
the buf given as a parameter. cnt is set with the number of bytes read/writen.

• devmnt.c:576,582

One fine reason for looping. The caller could want to read/write more than
blocksize bytes (MAXFDATA), in which case multiple Tread/Twrite must be
issued for at most blocksize bytes each.

• devmnt.c:584,587

Will not read (write?) more bytes than requested.

• devmnt.c:589,592

The only difference between read and write; not enough to justify two different
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routines. For reads, copy the data read into the user buffer. For writes, let the
cache know of the bytes writen to the file.

• devmnt.c:596,601

Next time, read/write past the bytes read/writen. The procedure adjusts the
file offset and number of bytes processed (cnt). The loop continues until n is
zero, which means that cnt is the initial value of n; or until read/write could
not service as many bytes as requested (no more bytes to read/disk full); or
until a note has been posted for the process.

syswrite9p

mntwrite9p

mnt9prdwr() Reads/Writes 9P requests (encapsulated in 9P).

• devmnt.c:515

mnt9prdwr implements both mntread9p (devmnt.c:459,463) and mntwrite9p

(:502,506); it is also used by mntrpcread and mountio to read and write 9P
requests. It is not a mnt device specific procedure, but a generic 9P tool.

The sysread9p and syswrite9p system calls call mntread9p and mntwrite9p

to do the work when the channel to the file server is serviced by the mount driver.
Otherwise, sysread9p (sysfile.c:335,372and syswrite9p (sysfile.c:414,441)
call the device read/write procedure or unionread as they should.

• devmnt.c:521,525

At most MAXRPC-32 bytes read/written (and for write this limit should not be
ever reached). The Tread (or Twrite) is sent as usually and the reply processed
as usually too. So, what’s the difference with respect to mntrdwr? First, no
cache is ever used (would you cache a connection to a server?); Second, the
routine does not loop, and it reads/writes a single chunk of at most MAXRPC

bytes. The routines transmit a 9P message verbatim. If you compare sysread9p
and sysread, you will notice how in no case the the mount driver device specific
procedure is called to read the 9P request, and the same happens to syswrite9p

and syswrite. Besides, note that mntrdwr uses messages of blocksize length
(which can be much lower than MAXRPC) while mnt9prdwr uses messages of at
most MAXRPC bytes, independently of the configured blocksize. Perhaps both
routines could be unified into a single one, but the author preferred to keep
them separate.

5.6 Caching

In the third edition of Plan 9, authors considered that it was important (due to
performance reasons) to cache files mounted from remote file servers. That can save
many 9P transactions by satisfying reads and writes from a local cache in the client
kernel. The implementation stands at cache.c.

In this section, you will be reading the code related to caching in the kernel.
Besides a kernel cache, Plan 9 has a user-level program called cfs (see cfs(4)) that
caches remote files. cfs is started at boot time and services reads from a local cache
(kept on a local disk). This is interesting when it is better to read files from the local
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Figure 5.7: Caching remote files. The best thing (1) is to keep them cached in kernel
memory. The next best thing (for slow connections) is to keep them cached in a local
disk (2). Finally, you always have the network (3).

disk than to read them from the network. Surprisingly, this is not always the case,
because when you have a fast network and a fast file server node (plenty of memory)
it can be much faster to read a file from the network than reading it from the slow
local disk. Nevertheless, for slow network connections the performance improvement
can be dramatic.

Regarding the kernel, cfs is just a “remote” file server. Therefore, in what follows,
I focus just on the caching done by the kernel. Figure 5.7 shows how all the pieces fit
together.

chandevreset

mntreset

cinit() Initializes the kernel cache for remote files.

• cache.c:105,127

You already know that cinit is called by mntreset at boot time. It initializes
the cache global (:39,47) by allocating NFILE Mntcache entries, double linking
them through next and prev fields using head and tail as the list header.
xalloc is used, and not malloc. When the machine is plenty of memory (more
than 200MB), the maximum number of bytes to cache in a file (maxcache) is
not set to its usual value (MAXCACHE) but to 10 times more.
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5.6.1 Caching a new file

sysopen...

mntopen

copen() Prepares a cached remote file for I/O.

• cache.c:210

The cache starts to work when copen is called. A copen is meant to prepare the
cache for I/O on a file. It is the mount driver that calls copen when a remote
file is being opened or created (i.e. before doing any I/O on it). By “remote”
you should understand “not in kernel” now. Even if the file is serviced locally
by a user program, caching it can avoid unnecessary data copies and context
switches.

The cache does not keep copies of intermediate directories used to walk to the
files of interest. Therefore, cache memory is used just for files being really used.
The user controls which file systems should be cached (i.e. by means of the
MCACHE flag).

• cache.c:216,217

The mount driver checked the CHDIR bit, but the author ensures that it is
innocuous to call copen on a directory.

Plan 9 does not cache file attributes (walk works well enough). The alterna-
tive would be to cache attributes (including directory contents) and perform
walks locally. However, this would require that all contents of all intermediate
directories walked be sent to the client. Moreover, this would introduce severe
coherency problems (all file server clients should see the same set of files, with
the same attributes).

• cache.c:219,223

Entries in the cache are linked at NHASH hash buckets (:40,47). The hash
function is a modulus on the channel qid.path. Multiple entries are linked at
the bucket through the hash link of Mntcache. The routine searches the hash
bucket for any entry for the same file. The check is done using qid.path, dev,
and type fields of Mntcache, which keep the qid.path, dev and type fields for
the cached file. If multiple channels point to the same file, these fields would be
same in all of them. vers is not compared. The cached file could be a previous
version of the file, but it would still be its cache entry. Figure 5.8 shows the
structures involved.

• cache.c:224

An entry found. The mcp (Mntcache pointer) of the channel is set to point to
its cache entry; read and write procedures can avoid scanning the whole cache
to lookup the Mntcache for the channel. The assignment is needed because
multiple channels could be opened for the same file. All of their mcp fields
would have the same value after copen.

ctail()Sets an Mntcache at the tail of the LRU.

• cache.c:225

Remember that Mntcaches are double linked on a queue starting at Mntcache.head
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and .tail. ctail (:182,207) unlinks the node given from the list (hence the
double links) and links the node at the tail. By doing so, the file last opened
is found last on the list of entries. Probably, the author would reclaim cache
entries starting from the head of the list. It makes sense not to reclaim this
entry because it has been just opened, and is likely to be needed soon.

• cache.c:226,235

Once that the entry is placed on the list, the lock for the cache can be released.
If vers (also copied in the Mntcache) is older than it is in the channel, the
file has changed and cache contents are useless. The vers field in Mntcache is
updated whenever new file contents are written through the cache. The routine
cnodata does the job of disposing any (useless) cached bytes for the file—more
soon. The cache is prepared to service the file.

One quick note about vers. vers in the channel is updated whenever 9P re-
quests carry back a QID for the file. If other nodes are using the (cached) file
too, it could be that the cache contents are actually out of date, and the kernel
wouldn’t notice. The actual responsible for this lack of coherence is the user,
who mounted the file with caching, or the server owner, who did not set the
OCHEXCL bit in the file being cached. To maintain a set of distributed caches in
coherent state is just too expensive and complex. The tools the author gives you
allow you both to cache files and to use them coherently, you only have to use
the tools in the right way. Other distributed file systems tried to do distributed
caching, but they either supplied “session coherence” (i.e. only after a close can
others see our changes) or were so complex that a node failure could bring the
whole system down.

• cache.c:239,248

No Mntcache entry found for the file. Should use one of the existing entries to
service the file. The hash bucket for the head of the Mntcache list is searched.
If the head entry is there, it is removed from the hash list. You should note here
that it is the head of the list the one reused. A file could be loosing its entry in
favor of another one. You should note also that used entries are linked into the
hash bucket (hashing with the QID).

• cache.c:250,252

The old file (if the entry was used) is forgotten. Now this entry is for the file
represented by the channel.

• cache.c:254,257

The entry is linked into the hash bucket for the c channel, where it belongs
now. ctail is used to move the entry to the tail of the list, as it has just been
used. By allocating from the head, and moving the entry to the tail whenever
it is used, the author is doing a “Least recently used” policy to maintain cache
entries.

• cache.c:259,269

Finally, mcp in the channel is set to the entry allocated for it and any extent
linked into the Mntcache (which would be for the previously cached file) is
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released. The cache is unlocked as soon as no pointer is being moved. The
entry has to be kept locked because extents are being released.

Extents

copen

cnodata() Invalidates a cache entry.

• cache.c:166,180

We had pending the discussion of cnodata. The cache does not cache bytes,
but Extents. (cache.c:16,24). An Extent is a len bytes portion of the file
starting at start offset. All cached extents for a file are linked through their
next pointers, at the list field of the file’s Mntcache. The routine is simply
calling extentfree for the whole list.

extentfree()Deallocates an extent.

• cache.c:63,71

extentfree is releasing the extent. It links the extent into the head of the
extent cache (:50,56). The next time the cache allocates Extents, the ones
from the ecache.head will be reused. extentalloc()Allocates an extent.

• cache.c:73,102

Initially, the ecache has all its fields set to zero by the kernel loader; the first
time extentalloc is called, it would notice that the free list (head) is empty,
and allocate NEXTENT extents.

The cache could do the same for the Mntcache entries; or alternatively, cinit
could also contain lines :81,92. One reason the author could had to initialize
extents this way, is that the user could never use the MCACHE flag for mounts,
and the cache would never be used. But in that case, there is no need to keep
Mntcache entries allocated.

The actual allocation of the extent is done at lines :95,98. The routine clears
the contents of e (security first!).

5.6.2 Using the cached file

The next time the cache works, is when mntread calls cread (devmnt.c:480) and
cupdate (devmnt.c:489), and when mntrdwr calls cwrite for Twrites (devmnt.c:592).

Reading from the cache

sysread

mntread

cread() Services a read from the cache.

• cache.c:288

You know cread is called to read from the cache instead of using Treads, when
feasible—i.e. when the cache has the bytes.
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• cache.c:297,298

off is the file offset where to read and len is the number of bytes. As only the
initial maxcache bytes for the file are cached, cread ignores any request which
passes that limit. Perhaps the condition is too strong, as off could be below
maxcache and part of the len bytes could be cached.

• cache.c:300,302

Either the mcp has the Mntcache to use, or it is nil—stating that the channel is
not being cached.

cdev()Checks that the cache is still for a channel.

• cache.c:304,308

cdev tells whether the entry is valid as a cache for the given channel (:273,285).
It checks path, dev, type, and vers. Mntcache entries are stolen from the head
of the LRU list. The entry for the channel could have been reused and the
only way to know is to check these fields. (The alternative would be to iterate
through channels, or to link channels using an Mntcache entry, which is more
complex and inefficient).

When an Mntcache is stolen from a channel, that channel remains uncached—
cread (also cupdate and cwrite) ignores it and does not allocate another
Mntcache for it. This is a fine way of preventing Mntcache entries from be-
ing stolen repeatedly due to reads and writes; that only happens during open.

• cache.c:310,321

The list of Entents for the entry is searched for an entry containing offset

(the first byte read). If there is no such entry, there is nothing of inter-
est cached for the file. Extents are sorted accordingly with their addresses
([start/start+len]).

• cache.c:323,361

Starting to use the cache. cread copies bytes from the Extent located previously
(and following ones if necessary) to the read buffer. total keeps the total
number of bytes serviced, and len maintains the number of bytes yet to be
read.

• cache.c:324,331

Each extent uses at most on page to cache file contents. By using extents
instead of pages in Mntcache, the author can keep track of byte ranges cached
for the file. cpage returns the Page structure for the extent; should it be nil,
the extent does not have memory caching anything and it is removed from the
list (:327) and released. If an extent did loose its page, the author assumes
that any following one (which could contain cached bytes) has lost its page
too. cpage (cache.c:156,164) just calls lookpage, which is discussed in the
memory management chapter, to lookup the page used as a cache.

The author uses just pages to do caching. Other systems use several kinds of
caches, which in the end, are using pages too. By using always pages to do
caching, actual caching has to be implemented just once: by caching pages. In
the next chapter you will see how Images (used to keep a memory image of used



250 CHAPTER 5. FILES

files) are using pages too, as segments do. Simple, isn’t it? If you don’t agree,
try to think how caching could work if the author did cache “files” or “blocks”
instead of pages coming from files—you should exercise open/close/read/write
requests on this imaginary cache hierarchy.

• cache.c:333,336

The extent has a page caching some bytes. o is set as the offset within the
extent corresponding to the offset in the file. l determines how many bytes
can be read from the Extent.

• cache.c:338,344

kmap ensures that the cached page can be read from the kernel (you know it’s
a nop here), and the author ensures that the page is released and kunmapped
(nop) on errors. cpage returns a page, and it should not be unmapped while
the routine is using it; putpage lets the memory system know that the page is
no longer in use by the caller of cpage. See lines :348,351 too.

• cache.c:346

Here is the read from the cache! memory copied from the extent to the read
buffer.

• cache.c:353,361

After memory has been copied from the extent, if the read request needs more
bytes, go to the next extent which has the following bytes. Note the check:
there could be no next extent, or it could be that the next extent is not caching
the bytes right after the current one (it does not start at offset, but starts later).
In this case there is nothing more cached for this read.

When some of the following bytes are missing from the cache, the author refuses
to check if any posterior extent would have bytes within the range read. The
benefit may not be worth the effort. Besides, the caller of cread assumes that it
reads a contiguous initial portion of the region being read; the trailing portion is
read by the mount driver. Any change here to bypass holes in the cache would
require changes in the mount driver too. The author assumption is used to keep
the code simple, yet provides effective caching (You should take into account
that most applications read entire file contents).

Updating the cache

sysread

mntread

cupdate() Updates cache contents.

• cache.c:460,478

cupdate is called by the mount driver after reading the trailing portion of the
file region being read—that portion was missing from the cache and cupdate

adds it to the cache. Any further cread would now find that portion too. Initial
checks are like those in cread, for the same reasons.

• cache.c:483,489

The Extent list for the Mntcache entry is to be kept sorted by file offsets cached.
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• cache.c:491,499

f is the extent starting past the offset added to the cache (if any), and eblock

the end of the new portion cached. So, if the portion read overlaps with the
next extent, only bytes missing up to the start of that extent must be inserted
(remember that the author stops at the first hole while reading). If all the
portion being updated in the cache overlaps with the next extent, just forget
about the update. This could happen because several processes could read from
the channel, find the hole in the cache, issue Treads for the file, and try to
update the cache. Only one copy should be added.

• cache.c:501,509

These lines are the special case for insertion when it has to be done at the
head of the extent list. cchain does the actual work of allocating extents and
memory to cache the bytes updated. It returns a pair of pointers to the first
(returned value) and last (in tail) nodes linked as a (sub)list to be inserted.
When inserting at the head, the next of the last new node is the first node of
the list (f, although using m->list would be more clear); and the new head
node is the first of the list allocated. cchain is discussed later.

• cache.c:511,522

Not the first node, so cupdate ensures that this does not overlap with any
previous node (as it was done before with any posterior node).

• cache.c:524,540

ee was set as the end of the previous extent (:512). If offset is precisely that,
the updated portion is contiguous to the previous extent. If the previous extent
length is less than the page size, it could accommodate up to BY2PG - p->len

bytes for the updated portion. Do so. It could be the case that it could accom-
modate all the updated portion, in which case there is no need to allocate more
extents (cchain would be never called). cpgmove is just a memmove that gets
and kmaps the extent page while copying memory (:435,457).

• cache.c:524,547

As it was done with the head, cchain allocates more extents to accommodate
bytes updated. This means that the previous node was either not contiguous
or not with enough space on its page to cache all the updated bytes. How does
cchain work?

sysread...

cupdate

cchain() Creates a chain of extents to update the cache.

• cache.c:368,381

You know its interface. It loops creating extents to keep more bytes from buf

until the number of bytes yet to be updated is zero. It is not considered a serious
problem if no new extent can be allocated; in this case, nothing more is cached.
When all NEXTENT extents are in use, nothing more is cached.

• cache.c:383,387

An extent caches at most one page. auxpage returns a page that can be used by
the caller. Should no page be available, there is no need to keep the the extent.
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• cache.c:388,409

After noting in the extent what it would be caching, the bid field of the extent
is set to the pgno counter in cache. This value is also noted in the daddr (disk
address) field of the Page used, and can be used both for consistency checks
(:160,161) and to lookup a page with a given bid. pgno is incremented not by
one, but by BY2PG instead; it is being used as the address in a fictitious device
where all pages used by the cache are kept in allocation order.

• cache.c:410,417

The memory updated in the cache is copied into the extent page.

• cache.c:419,420

Before releasing the page, cachepage is used to add the page to a page cache.
That is discussed in the virtual memory chapter, but note how extent pages are
kept in the page cache. Extents are just adapting the page cache to serve as an
extent cache for remote files.

Writing to the cache

syswrite

mntwrite

cwrite() Updates the contents of a cached file (new version).

• cache.c:551,574

cwrite is called to write to cached files. It increments vers both in the
Mntcache and in the channel QID, as the file is being updated.

The mount driver calls cwrite just for Twrites on cached files, and that is the
case when it increments the QID vers for the file; if somebody else is using
the file and the server is incrementing its vers field, this client wouldn’t notice.
Other file systems tried to enforce coherence to the limit, and as a result, forced
clients to be blocked while transactions for other clients were ongoing. In Plan 9,
if this relaxed coherence model is a problem, the application should use OEXCL

to ensure that only one process at a time has the file open—or rely on any other
synchronization means.

• cache.c:576,599

The first extent for the portion written is located. If such extent is not the first
one or does not exist (:583), the routine tries to use any final hole in the page
for the previous extent—if contiguous. This is the same of cupdate.

• cache.c:601,621

The portion written could overlap an extent which would be past the one being
written. This could happen if the file has been read into the cache (updated)
and another process writes the file or the reader does a seek to rewrite the file.
The new bytes written are the valid ones, and any previous copy has to be
released. extentfree is used to release the extent, rather than reusing it. In
that way, cchain can be used to add more extents to the cache as it was done
in cupdate.
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I think that cupdate and cwrite could be serviced by a single routine, like
happens typically with read and write. But the author may disagree.

5.7 I/O

You now know how files work in Plan 9, but you still have to look at how actual I/O
is done. Prior to the 3rd edition, Streams [13] were used as the framework to do I/O
(i.e. to read/write from devices). In the 3rd edition, streams were replaced by a more
simple (and less flexible) queue based I/O module. In this chapter you saw how pipes
used qio facilities to do I/O, and in previous chapters you saw how the console and
serial lines used qio too. The kernel uses queues for I/O wherever there is an I/O
flow of bytes from a source to a drain. This happens when using devices and also
when using artifacts like pipes. I suggest you revisit the pipe device after reading qio

in this section, so you could fit the pieces together.

5.7.1 Creating a queue

• qio.c:25,50

a queue is a flow of bytes from the source to the drain (e.g. from the keyboard
device to the reader of the console keyboard). The queue maintains Blocks,
each with a block of bytes. Queues perform flow control activities; they block
the reader when the queue has nothing for the drain, as well as they block
the writer when there is no room in the queue. Let’s see all this while you
learn how routines to use Queues work. If you look at the file, the initial part is
implementing routines that operate on Blocks and the final part is implementing
queue routines.

qopen() Opens (prepares) a queue for I/O.

• qio.c:740

A queue starts its service when a call to qopen creates it (devpipe.c:67 and
:72). qopen receives the maximum number of bytes to be kept buffered by the
queue (limit). If you look the comment, you will notice that qopen uses malloc
and should not be called from an interrupt handler, because malloc could try to
acquire locks to allocate memory and cause a deadlock with the process being
interrupted.

msg is true if the queue is queueing messages and not bytes. This is an important
parameter. For a pipe, it does not matter whether the bytes fed to the pipe
were fed in a single write or in a couple of writes; if the reader reads N bytes,
it should get those N bytes if they are present in the queue—independently of
how were they written. However, for a network transport and other devices, it
is important to read what was written, no more, no less. If a network device
places two network packets in a queue, and a network transport wants to get the
next packet received, it should be able to read just the last “message” written
(i.e. the last packet queued). Other way to say this is that queue can either
delimit data from different writes or not. msg is a way to make Queue a generic
queueing tool.
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The kick and arg parameters are used to let the queue user do something before
flow controlled processes are awaken. This is a convenient thing to have to make
more simple the code of the queue users. devpipe has nothing special to do and
passes nil as kick. However, the ns16552 serial device passes ns16552kick as
its kick procedure (to restart serial output).

• qio.c:744,759

inilim is the initial value for limit; more soon. state holds the state for the
queue, which is initially Qstarve (no bytes in) and Qmsg if the queue is message
oriented. eof and noblock are cleared and you will see what this means.

5.7.2 Read

qread() Reads bytes from a queue.

• qio.c:860,873

qread is the procedure to read bytes from a queue. Read the comment. It calls
qbread, who does the actual job of reading len bytes and returning a Block

with the bytes. qbread returns zero if there is nothing more to be read (the
queue was closed and nobody would write more bytes on it, and the queue is
also empty). BLEN()Returns the length of data in a block.

• portdat.h:134

BLEN is defined to take a pointer to a Block, and return the difference between
its wp and its rp. That is the number of bytes yet to be read in the Block.

• portdat.h:123,133

It is clear what is happening here, a Block contains a series of bytes at base

(the first one is base[0], and the last one is base[lim-1]). Bytes written into
the block are written starting at wp (which would be initially base). Bytes read
from the block are read from rp (which would be initially base, and should
never go beyond wp).

• qio.c:873,877

qread copies the bytes in the block (len bytes) to the user buffer (vp), and then
it releases the block. freeb is discussed later.

qbread() Reads a block from a queue.

• qio.c:773

qbread does the actual work of reading from the queue. Besides helping qread,
it is a queue read routine on its own—it is very useful to implement devbread

procedures.

• qio.c:778

A queuing lock is gained on rlock, where queue readers synchronize. qlock

maintains a list of blocked processes so that the first who called qbread would
be the first getting bytes from the queue, if it blocks while acquiring the lock.
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• qio.c:785,807

On this loop, an ilock is done on the queue, this prevents any interrupt handler
from using the queue, because no interrupts can arrive while holding the lock.
Once the lock on q is gained, no one is messing up with the queue block pointers
and they can be used safely. If the list of blocks in the queue (bfirst) is not nil,
b is the block to read from, so break the loop. If there are no blocks (!b), and
the queue state is Qclosed there will never be a block, so the author releases
the locks, sets the eof flag in the queue and the routine returns zero as the
number of bytes read. A read count of zero is the convention in Plan 9 for
signalling EOF. When EOF is signalled more than three times, the reader could
be ignoring EOF and the routine raises an error instead. q->err contains the
error string to raise; e.g. qclose sets it to Ehungup.

If the state is not Qclosed, and there is no block in the queue, this process must
wait until the source (the writer) puts more bytes in the queue. So, the author
sets the Qstarve flag to let the writer know that a reader is starving (waiting
for bytes), the q lock is released (so that the writer could add more bytes to
the queue) and the process sleeps on rr until notempty. notempty lets sleep

know that it shouldn’t sleep if there are bytes to be read in the queue. The
parameter for notempty is the queue being read. When the process wakes up
later, it would repeat the loop, check for Qclosed again (the writer could close
the queue instead of writing to it) and that process repeats until there is a block
in q->bfirst.

BALLOC()Returns the number of bytes allocated to a block.

• qio.c:809,814

Got a block. The routine removes it from the head of the list (Blocks are linked
through their next field). dlen counts the number of bytes in the queue, as a
block of n bytes has been removed. len counts the number of allocated bytes
in the queue (i.e. number of bytes from base to lim-1 in all blocks linked)—
BALLOC (portdat.h:135) is a macro counting the number of allocated bytes in
a block).

• qio.c:818,837

If the block has more bytes and the queue is not message oriented, remaining
bytes (unread) should be kept in the queue. If the queue is message oriented,
the reader should read the first message; no matter how many bytes it wants.
Any unread portion of the first message is discarded. Line :819 checks that
there are more bytes in the block (n) than wanted (len); the next line checks
that the queue is not message oriented.

Note the iunlock (lock held since :787). The lock is released while allocating
a block for n-len bytes, and copying those bytes into the block allocated (wp is
advanced to point past the bytes written in the block). The ilock is done to
mess up with block pointers again while inserted the new block in the queue—
holding the unread portion of the previous block. By releasing the lock, the
queue can be used by others in the mean time.

Line :836 sets wp in the block being read to point after the bytes to be read from
the block. Should the application write to the block, it would not overwrite the
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data already placed in the block.

• qio.c:839,846

The writer could be sleeping because there was no free room in the queue to
write more bytes. That is signaled by Qflow in state. Should that be the
case, if the used space in the queue is below half its maximum number of
bytes, the writer can be awaken. Even though the queue may have (less than
limit/2) free room, the writer is kept sleeping. That is to avoid sequences of
sleep/wakeup/sleep/wakeup/. . . because the writer is awakened too soon, fills
up the empty room, and has to sleep again. The queue state is changed before
releasing the lock. After the lock is released, other processes can lock the queue
and interrupts can arrive (if they were enabled before the ilock).

• qio.c:848,853

With the lock released, any writer sleeping awakened. If a kick procedure is
supplied to qopen, it is called. Usually, a process waiting to write the queue
corresponds to a process doing output to the queue (possibly drained by a
device). On the other hand, when it is a device the one doing output to the
queue (an input device), the kick procedure can be used to resume the device
and allow it to put more of its data into the queue—device input would happen
at interrupt handlers and it makes no sense to block (put to sleep) an innocent
process just because it happened that it was running while a device received an
interrupt stating that there are more bytes to add to an input queue.

• qio.c:856,857

Until now, any other reader would be blocked on the rlock—one reader at a
time!. Now other readers are allowed to enter the critical region and the block
with the bytes being read is returned to the caller. If the queue is message
oriented, all the bytes in the first block of the queue are returned; otherwise,
just the bytes wanted.

5.7.3 Other read procedures

qconsume() Reads from a queue even within interrupt handlers.

• qio.c:451,517

Within an interrupt handler, qread cannot be used. qconsume is like a qread

which can be used by interrupt handlers (e.g. devns16552.c:475). First,
qconsume does not call qlock, which may call sleep and perform context
switches. (Is there any context to switch while you are running within an
interrupt handler?) Second, qconsume does not call sleep to block when there
are no bytes to be read—qconsume would return -1 instead. Both routines,
qread and qconsume, can be used on system-call (and trap) handling kernel
code, within the context of a process.

As you see, routines for use on interrupt handlers (and those that must synchro-
nize with them) use ilock. If the kernel is servicing a regular system call and
a queue routine uses ilock, no interrupts are allowed, and no interrupt handler
can even try to use a queue routine: no deadlock. If the kernel is servicing an
interrupt and the queue calls ilock, no interrupts would arrive and there can
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be no context switch, so there can be no deadlock. That is why the author
avoids carefully any call to sleep and context switches here.

Of course, other processors can still try to use the queue, but would notice the
lock, and would not interfere (they would either block the process or spin to
wait a bit).

qconsume takes care of being as lightweight as possible. Unlike qbread, which
would split the initial block into two ones when only part of the block is read,
qconsume uses the rp block pointer to read only part of the block when len

dictates that. In that way, qconsume avoids block allocation. Along with this
line, any initial empty block is skipped and linked into the tofree list passed
later to freeblist.

qget() Gets a block from a queue.

• qio.c:369,403

There is yet another read procedure for queues, qget. It is the most simple
read procedure, and it is specialized just to get the first block in the queue,
if any. It never blocks, and is appropriate for use on interrupt handlers too.
qconsume can read any number of bytes, but qget can only get a block. qget

is used mainly by the code in ../ip. The tcp/ip protocol stack uses blocks to
store protocol data units (e.g. network packets). qget and other queue routines
operating on queue blocks, allow the tcp/ip code to use queues to do packet
(i.e. block) i/o.

qdiscard() Discards bytes from a queue.

• qio.c:408,445

qdiscard is not a “read” routine, but removes bytes from the queue. It iterates
through the queue blocks until len bytes are discarded. If a whole block is
discarded it is freeb’ed, otherwise the rp pointer is used to “read” the bytes
discarded. There is no synchronization regarding qread, and the routine does
not block. It is also appropriate for interrupt handlers. This routine is useful
for ../ip code, which discards data when it is known to be received by the peer
node (e.g. when data is acknowledged).

qcanread() Is there anything to be read from the queue?

• qio.c:1160,1164

qcanread is a small procedure, albeit an important one. Some queue users
would not like to read the queue when that would block them (e.g. devcons).
qcanread returns non-zero when there is something to read. The caller can later
call qread. There is no guarantee (specially on multiprocessors) that the queue
would be still non-empty when qread is later called. The caller of qcanread

must ensure that by any other means if that is important.

5.7.4 Write

qwrite() Writes bytes on a queue.
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• qio.c:961

qwrite is called to write bytes in the queue (e.g. devpipe.c:327). If it is
message oriented, the bytes written are considered to be the message.

• qio.c:970,989

The routine writes at most Maxatomic bytes (32K) at a time in the queue. It
is reasonable to limit how many bytes can be placed in the queue at a single
qbwrite to avoid a writer flooding the queue with a request so big that locks
are going to be held while acquiring resources to queue an unreasonable amount
of bytes (e.g. lots of pages in memory, etc.) It is also good to keep this limit to
put a reasonable limit on message lengths, so that readers of message oriented
queues do not have to cope with unreasonable long messages. Important lines
are :976, which allocates a block for the n bytes being added at this pass;
:982,984, which copy the bytes from the user buffer into the block using the
wp pointer; and :986 which calls qbwrite to do the job of queuing another
chunk of (at most Maxatomic) bytes. The while condition checks for Qmsg; if
the queue is message oriented, and a message is at most Maxatomic bytes, the
routine would not qbwrite any byte that does not fit into a message.

qbwrite() writes a block in a queue.

• qio.c:891,901

qbwrite adds the block to the queue (e.g. devpipe.c:354). The lock used
is wlock. The queue can be read and written at the same time, but writers
serialize their access to the queue (in the same way readers do). Like qbread,
this routine is useful to implement devbwrite procedures.

• qio.c:904,927

While adding the block, a lock on q is held. Again, an ilock is used (know
why?). If the queue is closed, there is no point on writing on it, so the block
is released and the queue error returned. The loop keeps the writer there until
the block can be added; but if the length of the queue is beyond its limit, no
more bytes should be added.

If noblock is set (it was set initially to false by qopen), a write on a “full” queue
is discarded and qbwrite pretends that n bytes in the block were written. If
noblock is not set, the writer of a full queue sleeps until the queue is below its
limit—and Qflow is flagged so that a reader would wake up the sleeping writer.

• qio.c:929,936

The block is added to the queue and the queue len and dlen fields are updated.
Blocks are added at blast—they are read from bfirst.

• qio.c:939,942

If a reader is sleeping waiting for bytes in the queue, the routine wakes it up.
If there are multiple readers, the first one holds rlock while sleeping, so other
readers would not even enter to read the queue until the first one is awakened
and gets the bytes. That is the reason for having just one bit to signal “readers
waiting” “writers waiting”.
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5.7.5 Other write procedures

qiwrite() Writes to a queue (for console).

• qio.c:999,1045

qiwrite is a version of qwrite folded with qbwrite. It exists because console
routines may want to write on queues during boot time, even before there are
real processes (see devcons.c). ilock is used (to prevent further interrupts
too), but there is no qlock (read the comment). That means that only the lock
on the queue is gained, but in no case the “current process” (which could be
simply the flow of control existing at boot time) would call the scheduler within
qlock. Besides, flow control is not obeyed, the caller will never block because
the queue has gone beyond its limit.

In any case, it works like qbwrite, and would wakeup any reader waiting.

qproduce() Writes bytes on a queue even within interrupt handlers.

• qio.c:634,683

There is yet another routine that writes to the queue, it is qproduce. Like
qiwrite, it does not use qlock. It does not enforce Maxatomic, and never
sleeps. qproduce is to qwrite what qconsume is to qread. qproduce is intended
to be called by interrupt handlers (E.g. devns16552.c:725). When the queue
goes out of limits the block is not added and an error signalled by returning
-1. Besides, iallocb is used to allocate a block, and not allocb. The iallocb
version of allocb knows it runs within interrupt handlers.

qpass() Writes a (list of) block to a queue.

• qio.c:519,564

qpass is the counterpart of qget. It writes a block in a queue. There is no lock
on q->wlock, and there is no call to sleep for a full queue. The routine is also
appropriate for interrupt handlers. One interesting thing is that the routine
adds not just one block, but a list of blocks (:534,537) and accounts for that
(:541,546). Another interesting thing is that it enables Qflow not when len

goes above limit, but when it goes above limit/2 (:551).

Queues get full when the limit is passed. Usually, it is a write which makes the
queue go above limit the one that sets Qflow. In this case, the routine is used
to write whole blocks (maybe more than one), so the author takes care not go
too far above limit, and half the limit is used as a limit.

This routine is very useful for the code in ../ip , to place protocol packets
(queue blocks) into queues to be serviced later.

qpassnolim() Writes a (list of) block to a queue without obeying limits.

• qio.c:566,606

qpassnolim is exactly as qpass, but does not check for limit. In this case the
author wants the list of blocks to be written, no matter the queue fill state.
I don’t know why the author did not add a flag to qpass, to avoid checking
the limit, and wrote instead qpassnolim. Perhaps nobody cared to do code
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cleanup in qio.c, or perhaps careful measuring suggested the multiplicity of
routines. By the way, qpassnolim seems to be used for the ../ip code when
the author knows it is okay to overflow the queue to pass data to another part
of the protocol stack.

qwindow() Is there room in the queue for writing?

• qio.c:1146,1155

qwindow is to be used like qcanread, a caller of qwrite can use qwindow to see
if the qwrite would block or not.

5.7.6 Terminating queues

qhangup() Hangs up on a queue.

• qio.c:1095,1109

qhangup is used to state that no one else will write anything more to the queue.
However, the queue is kept with any block not yet read. The err field is used
to report that the queue is hunged up (or the message supplied by the caller),
and state is set to Qclosed. Any reader would notice the Qclosed and it will
not block waiting for more bytes. Any writer will just discard the bytes being
written. notempty (:766) returns true when the queue is closed, so that sleep
will consider that there is no need to sleep on a closed queue. The two wakeups

would wake up any reader or writer sleeping, and they will behave as I just said.
Did you noticed the ilock?

qclose() Closes a queue.

• qio.c:1062,1088

qclose closes the queue—like qhangup. Unlike qhangup, it releases any block
in the queue (:1083). qhangup is intended to be used when one end of the queue
hangs up, and how qclose is more like a “free” routine (e.g. devpipe.c:228,229).
Another way to see it is that qhangup can be used by writers to signal that there
is nothing more to come; while qclose can be used to shutdown the queue.
Qflow and Qstarve are cleared. Perhaps they should be cleared by qhangup

too.

qreopen() Reuses a closed queue.

• qio.c:1123,1132

qreopen can be used to undo the effect of a close. It clears the Qclose and sets
the Qstarve and eof fields as in qopen. The purpose is to reuse closed queues
instead of allocating new ones (e.g. devpipe.c:247,248).

qfree() Deallocates a queue.

• qio.c:1051,1056

When the queue is no longer needed, qfree does the close and then calls free.
It can be called for an already qfree’d queue, as free checks for nil pointers
and qclose does so too. The comment suggests that perhaps qclose should
add reference counting and free the queue when the reference goes down to zero.
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5.7.7 Other queue procedures

qcopy() Copies bytes from a queue.

• qio.c:688,734

qcopy is used to copy bytes from the queue into a new block. Bytes are not
read from the start of the queue. Instead, qcopy copies bytes from the given
offset in the queue. Lines :701,715 locate the block and “rp” (p) where to
start reading, and later lines perform the copy. The queue blocks and their rp

are kept untouched. This routine is used by the ../ip code, which usually likes
to copy data out of network messages.

5.7.8 Block handling

Routines early in qio.c perform operations on blocks. They are mostly of interest
to protocol stacks using queues as their I/O mechanism. For instance, code adding
headers, extracting data, etc. from network messages use these routines. I think you
should be able to understand these routines:

• qio.c:91,133

padblock takes a block and returns a new block (or the same bp if it has enough
space) with size extra bytes of padding at the front or at the back. That can
be used to add headers or trailers.

• qio.c:138,150

blocklen uses BLEN to return the length of a list of blocks. Some times, specially
when a message is traveling through a protocol stack, a message may end up
being a sequence of blocks.

• qio.c:155,174

concatblock takes care of merging all the linked blocks into a single one. Some
routines assume that a message is contained within a single block, concatblock
can be used to ensure that.

• qio.c:179,232

pullupblock checks that there are n bytes after the bytes in the block (after
rp). It allocates a new block if needed. This is useful to add n bytes to a
message without turning the message into a block list.

• qio.c:237,273

trimblock trims a block to a subset of the bytes on it. Useful to remove
unwanted headers and trailers. This can be used to trim bytes at the front, at
the end, or at both sides.

• qio.c:278,302

copyblock copies bytes to a new block.

• qio.c:304,330

adjustblock truncates the block to len bytes. Perhaps, trimblock could be
used instead of providing a new routine, although this routine would run faster.
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• qio.c:334,364

pullblock removes bytes from the front of a block list.

Finally, note how most queue routines update statistics declared at qio.c:109,14.
Those counters tell the author how intensively are used the routines involved. For
instance, if qcopycnt goes too far, it may be a symptom that queue copies should be
avoided if there is a performance problem involved. Statistics are important in that
they let the author know the real usage of the code; most of the author assumptions
would not correspond to the real system usage as seen by the statistics.

5.7.9 Block allocation

• allocb.c:24,56

allocb is the routine allocating blocks always but for interrupt handlers. The
memory allocated is for the Block itself, and also for the data to be kept in
the block. Hdrspc empty bytes are kept allocated besides the n bytes requested
(the total allocated space is size+Hdrspc+sizeof(Block)). That is to allow
protocol stacks to place their headers before the data in the block. Should the
author not do so, almost every step in a protocol stack would require allocating
new blocks, concatenating them, and releasing previous blocks. The system I/O
for networks would go unbearablely slow. Another interesting thing is that the
routine raises an error (unlike iallocb).

base is set pointing past the Block in the allocated memory, and rp and wp are
set pointing after the Hdrspc (which is computed by subtracting size from the
limit of the allocated memory).

The dance around BLOCKALIGN is ensuring that pointers are aligned to BLOCKALIGN
(8) bytes. That can prevent alignment errors on machines that are picky re-
garding where can integer values be placed in memory. Not the case, but this
does not hurt.

The memory held by the block would be released when free is called in the
block—the free block routine is appropriately set to nil.

• allocb.c:61,108

iallocb is a version of allocb for interrupt handlers. The difference with
respect to allocb is that ialloc does not raise any error (returns nil instead)
and sets the BINTR flag in the block (some ialloc accounting too, admittedly).
The flag is only used by freeb to do accounting, but is not used for other things.

• allocb.c:110,140

freeb calls the free procedure, does accounting for iallocated blocks, and
releases the block. If a free procedure is provided, free is not called on the
block; providers of block storage are responsible to reclaim unused storage. All
the pointers are set to Bdead, which is a meaningless value that can be recognized
quickly when the debugger prints pointer values.
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5.8 Protection

In Plan 9, there are several system calls (see auth(2) and fauth(2)) that have to do
with protection. However, before looking at their code, it is better to understand the
overall architecture of Plan 9 regarding security. Read also auth(6) and cons(3).
What I comment here is just what I think you need to know to understand the code.

5.8.1 Your local kernel

Each Plan 9 machine is either a terminal, a CPU server, or a file server. Each machine
run its own Plan 9 kernel, customized to perform well for the given task. Terminals
are machines used to interface the Plan 9 network to its users. For example, each user
runs rio(1) (the window system) at its terminal. Terminal machines use services from
other nodes in the network. In particular, a terminal uses a CPU server to execute
commands on it, and a file server to get files from it. Besides, machines where you run
your programs in the network (e.g. cpu servers) use files serviced from your terminal
(e.g. your mouse).

Everything is a file in Plan 9, and file permissions are what the system uses to
provide protection. Each file has rwx bits for its owner, its group, and others (you
already know how that works, since you did learn that for UNIX). Thus, one barrier
of protection is placed at the file server that services the files accessed.

In Plan 9 there is no ‘superuser’ as in UNIX. In UNIX, a user with uid 0 is granted
special privileges by the system, which has conditionals in the kernel to allow such
uid to do almost anything. In Plan 9, no user is granted permission to do everything.

Each Plan 9 kernel is booted by a a user, and that kernel only trusts that user.
The user who boots a node is referred to as “eve”, as you know. Each kernel services
some files, and eve is granted special permissions on those files—noticed the checks
for “eve” while reading the code?

By trusting only the user who did boot the node, Plan 9 does not allow other
users (nor other kernels) in the network to do things to your local files. Why does
Plan 9 give special permissions to eve?

If you have physical access to the system and can boot it, nobody can prevent you
from using another system (e.g. msdos) and access the disk files without Plan 9 even
knowing. Therefore, there is no security breach in allowing you to bypass permissions
for local files.

To check permissions for a process accessing a file, each process has a user iden-
tifier (Proc.user). The initial process belongs to the user eve, who booted the
machine. That user, types its user name and its password and the boot process uses
that information to authenticate the user. Before this point, the boot process belongs
to the user “none”. Say that the typed user name was nemo; once authenticated,
the boot process continues and processes forked would run on nemo’s name too. To
authenticate, the user process uses auth(2) services to get in touch with the authen-
tication server (another machine) and gain tickets for the user. While authenticating,
authwrite (auth.c:422) is called to respond to a challenge, and if the reply is ok,
the user field of the process is changed according to the user who is authenticating.
So, each machine trusts the authentication server and itself; it usually trust nobody
else.
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For terminals, this is mostly what happens. For CPU servers, the user who boots
the CPU server has some processes on its name, and must be able to create processes
for other users willing to compute on the CPU server considered. What happens, is
that the user owning the CPU server is granted permission (by the authentication
server) to speak on behalf of the user that wants to compute on the CPU server.

5.8.2 Remote files

According to what I said, other nodes will not trust you. How could they trust you?
Actually, the Plan 9 kernel does not care—mostly. As far as the kernel is concerned,
your files come from a server (a set of servers actually) speaking 9P through a set of
mounted file descriptors. It is you who get those file descriptors by setting up network
connections to file servers. If you can authenticate to a file server in the network, and
convince it to speak 9P for you, you can later give the descriptor to mount(2) and
bring the server files to your name space. In principle, your local kernel does nothing
to let you authenticate to the remote server and get your 9P session up. What your
local kernel does is to check protections for your local files.

As an example, you must first authenticate to a Plan 9 file server to use its files.
(e.g. you authenticate with a file server kernel to access your files; you authenticate
with your local kernel to get access to files serviced by the local kernel; etc). This can
be considered to be a first barrier of protection: convincing the file server to speak
9P with you. Later, the file server will be checking permissions, given the attributes
of its files and your (authenticated) identity; you can consider this as a second barrier
of protection.

By placing authentication mechanisms outside the system (which only has to han-
dle 9P), and letting you obtain the authenticated connections to file servers, Plan 9
can be as secure (and as insecure) as you want it to be.

One thing the kernel does for you is to keep your tickets—after you gave your user
name and password while booting—to authenticate connections for which you already
have tickets. Of course, you can still use any other means to protect connections with
your file servers, and then mount the connection descriptors.

The code keeping your user id and your ticket (generated from your password) is
found at /sys/src/9/port/auth.c, with console files serviced by /sys/src/9/port/

devcons.c. I think you should be able to read that and understand it, provided you
understood auth(6) and auth(2).



Chapter 6

Memory Management

Plan 9 uses paged virtual memory. Although on Intels there is segmentation hard-
ware, hardware segments are used just to implement protection ring 0 for the kernel
and ring 3 for the user—go back to the introduction chapter if you forgot. Hard-
ware segments are not to be confused with process segments, which is an abstraction
implemented in software by Plan 9.

Before discussing memory management system calls like segbrk, segattach, seg-
dettach, segfree and segflush, I start by discussing how memory management
works. You already know a bit about this, from chapter 3. I hope that way you
will learn what data structures are involved, and you will understand better the code
related to memory management system calls and memory management trap handlers.

During this chapter, you will be reading these files:

• Files at /sys/src/9/port

fault.c

Page fault handling.

page.c

Paging code.

segment.c

Process segments.

swap.c

Swapping code.

sysproc.c

Process system calls.

devproc.c

Process device.

devcons.c

Console device.

• Files at /sys/src/9/pc

mem.h

Memory management definitions.

265
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Figure 6.1: The user view of a virtual address space: A text segment with the program
code, a data segment with initialized data, a BSS segment with uninitialized data,
and a stack segment.

memory.c

Actually discussed at chapter ch:start, but you may want to reread it
here.

mmu.c

Memory Management Unit handling code.

trap.c

Entry points for MMU faults.

dat.h

Machine dependent data structures.

6.1 Processes and segments

• ../pc/mem.h:29,54

To remind you, the kernel uses the paging hardware (two-level page tables) to
implement virtual memory. Each process has its own virtual address space,
split into two regions, one for the kernel and another for the user. The user
portion of the virtual address space is using addresses from 0 to 2G (0x00000000
to 0x7fffffff). The kernel portion goes from 2G up to 4G (0x80000000 to
0xffffffff). The last two Gbytes, for kernel usage, are shared among all
Plan 9 processes, which means that their entries in the hardware page tables
are the same1. You should remember among other things the identity mapping
for physical memory.

From the point of view of the process, things are different (see figure 6.1). Its
2G of the virtual address space (what it can see) are structured into segments.
A process knows it has a set of segments attached at concrete virtual addresses
with concrete lengths. For instance, all processes have a text segment (with
instructions) at address UTZERO, past the first page—which is kept unmapped
to catch dereferences for nil pointers. Besides, processes have stack, data, and
BSS segments.

1It does not work exactly this way, but you will know.
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• mem.h:60,77

Do not confuse the process (software) segments with the hardware segments
used by Plan 9.

6.1.1 New segments

Let’s start by looking at how are new segments created, considering first a stack
segment.

• ../port/sysproc.c:324,329

The boot process was given segments by hand by the kernel bootstrap code
and the first thing it did was an exec system call to execute the code for the
boot process. sysexec then calls newseg to create a stack segment for the new
program. To remind you, segments for a Proc are kept linked to its seg array,
which has NSEG entries. If you remember from the chapter on processes, ESEG
is an slot for an extra segment (SSEG is the slot for the stack segment).

newseg() Creates a segment.

• segment.c:47,54

This procedure creates a segment of a given type, base and length. It aborts if
the size is beyond the maximum size allowed for a segment—size is in pages,
as segments must contain an integral number of virtual memory pages because
the paging hardware is used to implement them.

– portdat.h:365,383

If you look at Segment, you can see how there is a map array with pointers
to Pte structure (see figure 6.2).

– portdat.h:323,329

A Pte contains at most PTEPERTAB pointers to Page structures, each one
responsible of a (virtual) memory page.

What is happening is that a segment is using a virtual MMU as its data
structure. So, the map in Segment is like a two-level page table that lets
the segment hold pointers to all Page structures for the pages it has. The
reason for using this two-level structure is the same reason the hardware
has for using two-level page tables: to save memory yet to be efficient when
looking up entries.

– ../pc/mem.h:104

As map will have at most SEGMAPSIZE entries, and each entry has at most
PTEPERTAB pointers to pages, the maximum number of pages is the limit
checked at segment.c:53.

swapfull()Running out of swap space?

• segment.c:56,57

To implement virtual memory, all pages that do not fit into main memory are
kept in a swap file (which could be a swap partition, since partitions are files).
swapfull (swap.c:406,409) returns true when the swap file has less than a one
tenth of free space. The kernel refuses to create new segments when it thinks
that there will be no space in swap for backing up the segment.
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Figure 6.2: A Segment maintains a virtual MMU data structure holding Page struc-
tures for pages in the segment.
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• segment.c:59,64

The new Segment is created. It is reference counted because processes can share
segments. The type, base address, and top address (the first address past the
last address in the segment) are kept in the Segment structure.

• segment.c:66

mapsize is set to the number of map entries (PTEPERTAB entries each) needed to
hold size pages. Part of a the last Pte in map could be unused.

• segment.c:67,73

nelem is a macro returning the number of entries in an array (portfns.h:173).
If more entries are needed than the number of entries in the (small) ssegmap

array kept in Segment, map is allocated to contain twice the entries needed—
unless that value goes over the maximum number of entries, in which case, just
the maximum is allocated.

The author is allocating twice the space required because he thinks that in the
future the segment could grow. In that case, the author wants to be sure that
allocated space would suffice most of the times. That makes unnecessary to
reallocate existing entries. Right now, all pointers in the map are nil, because
smalloc is used. mapsize holds the number in entries in the map array.

• segment.c:74,77

What happens when there are less entries in map than entries in ssegmap?
map is set pointing to ssegmap, instead of allocating a fresh new map. The
author made a provision for small segments, so that they do not incur in the
overhead of allocating/deallocating maps. Small segments are serviced just
with the Segment structure. This is also a help to fight fragmentation, not just
execution time, because less structures have to be allocated.

• segment.c:79

Finally, a new Segment structure with enough entries in map (all nil) is returned.

6.1.2 New text segments

sysexec

• sysproc.c:381

During sysexec, a new text segment for the code found in the tc channel is
created.

sysexec

attachimage() Creates a segment attached to a file image.

• segment.c:246

attachimage tries to create a new segment of the given type. Unlike newseg,
attachimage attaches a file image to the segment, so that the segment would
appear to contain whatever is contained in the file referenced by the channel c
(see figure 6.3).
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Figure 6.3: A Segment can be attached to a file image.

• segment.c:251,252

imagechanreclaim is discussed later—it is just closing unused channels which
were used to fill up other images.

• segment.c:254

Locking the imagealloc, which is an allocator of Image structures.

• segment.c:19,31

The imagealloc contains a free list of Images, and a hash table for Images.
You will be seeing how it is used.

• portdat.h:309,321

An Image represents the image in memory for a portion of a given file. As
attachimage takes a channel to a file and builds a segment upon its contents,
Images are very important here. Just note how an Image contains a channel to
the file used as the source of data for the image (c), and how there is a link to
the Segment which is using the image of the text file.

• segment.c:260,261

All Images under imagealloc are kept hashed on the QID of they file they
come from. ihash selects the appropriate hash entry in imagealloc. Each
hash bucket has images linked through the hash field of Image. The author is
searching for an Image which comes from the same file; therefore, the qid.path

of the channel is compared to the qid.path of the Image (Images keep the qid

for the file they are maintaining).

• segment.c:262,270

Should an Image for c’s file be found, the image is locked and the QIDs compared
(with eqqid this time). The check at :261 was a quick guess to avoid locking
all images in the cache just to find out that they are not the ones of interest.
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In the real check, the QID, the QID for the channel to the mounted file (which
could be zero if not mounted), the channel to the mounted server and the device
type are compared. If you remember, two files are the very same file if their
QIDs match, they are serviced by the same device type, and the actual server
is the same. This is the check being done here. Lines :264,265 are needed
to distinguish between different channels going through the mount driver, but
pointing to different files on different servers.

If such an image is found, a reference is added and the routine continues at :298,
with the image locked. The author knows that only a copy of the file text has
to be kept in memory. If you run different processes for the /bin/rc program,
the text has to be in memory just once (because it can be shared due to its
read-only nature). Therefore, all such text segments would be sharing their
Images, which would be just a single Image for a channel going to /bin/rc.

• segment.c:274,285

No Image was found for the text, so the author allocates a new one. The loop,
which calls imagereclaim, tries to deallocate Images back to the free list. The
process doing an exec would be looping calling imagereclaim, and letting other
processes run until it can get an Image from the free list. This process could do
not much else, because exec did commit to execute a new process and it cannot
be even aborted. The choice is either wait for an image or die. The imagealloc
lock is released while allowing others to release images.

• segment.c:287,299

The new image is locked, a reference added to it, and its fields initialized. The
Image is linked into the hash bucket corresponding to the file’s qid. imagealloc
is unlocked but the image remains locked.

• segment.c:301,312

i could be a newly allocated one, or one reused (shared) from the hash. If the
Image comes from the hash, its s field points to a text segment, which would be
shared, so a new reference is added to it. If the image is new, it has no segment
yet, so newseg allocates a new segment of the type desired, and its image field
is set pointing to the image. You can go from the segment to the image using
image, and back to the segment using s. The waserror handling code does not
call nexterror, because the caller is gone during sysexec. Instead, the process
is killed on errors.

• segment.c:314,315

All set. Either a fresh new image created or a previous one shared.

sysexec

• sysproc.c:382,387

attachimage returns the image locked. The caller adjusts the fields fstart and
flen in the Segment using the image to record the portion of the Image which
should be used to fill up segment memory. In the case of the text segment, its
bytes come right from the beginning of the file—even the header is “mapped”
within the text segment (looks like the real text file, doesn’t it?)
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• sysproc.c:393,397

In the case of the data segment, its bytes come from the text file, past the code.

To summarize, an Image is an image of a program file kept on memory, it
is attached to one or more segments, and each segment attaches to a portion
(fstart, flen) of the file image. We will get back to images later.

6.2 Page faults or giving pages to segments

6.2.1 Anonymous memory pages

I use the term “anonymous memory” (as others do) to refer to memory which does not
come from a file. For example, text and data segments have their contents coming
from the file with the program being executed. Stacks and BBS segments, on the
other hand, are created with cleared memory, which does not come from any file.
Let’s pick up the stack segment as an example to see how it gets some pages.

sysexec

• sysproc.c:329,333

Once the process has a segment, it can reference addresses within the segment.
When are pages given to segments? When does a segment get actual memory?
If you read the comment, you’ll get a hint.

Segments are made of virtual memory pages. Those pages can be either at
physical memory, or at secondary storage. For the stack segment just created
at :329, there are no pages yet. But the code below will write to stack addresses!

trap

• ../pc/trap.c:218

The first time the kernel writes to an address within the first page of the stack
(the last page in the segment due to stack growing direction on intels), a page
fault trap is generated. That makes sense since the hardware MMU has the
translation for the stack page marked as absent.

• trap.c:242,245

The handler in the Vctl for the page fault trap is called—the handler was set
at :170 to be fault386.

trap

fault386() Services a 386 page fault.

• trap.c:435,442

fault386 receives the Ureg for the faulted processor context (which would be
code running within the kernel in the example). Due to Intel nature, the faulting
address is not saved by the hardware in the Ureg, but is located in the cr2

register instead. The routine saves the address in addr—another page fault in
the mean time would overwrite the cr2 and loose the previous faulting address.
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• trap.c:443,445

user is true if the saved context had the UESEL as the code segment selector
(i.e. it was code running at user-level). If the page fault happened while running
inside the kernel and mmukmapsync can handle addr, nothing else is done—the
page fault should be fixed. mmukmapsync()Synchronizes kernel maps for the

MMU.

• mmu.c:273,288

We will see later, but mmukmapsync tries to get the hardware page table entry
(pte) for the faulting address. It uses the pdb pointer for the boot processor,
which points to the “prototype” page table kept for processor 0. mmuwalk walks
through the page table to get the entry. If pte is nil, there is no second-level
page table and mmukmapsync does nothing. If the entry in the second level page
table is is nil, the same happens. In our stack page fault example, there is no
entry added for the new stack page. Therefore, in our case, mmukmapsync does
nothing.

What is mmukmapsync doing then? Try to guess, later I’ll tell you.

• trap.c:446

If bit 2 is set in the trap error code pushed by the processor, the fault was due
to a write operation. So read means that it was a read the operation faulting
at addr.

• trap.c:447,449

insyscall records whether the faulting process was executing within the kernel
(e.g. sysexec) or was running user code. In any case, you are now running
within the kernel. fault is called to do the actual processing. . .

trap

fault386

fault() Services a page fault.

• ../port/fault.c:9

. . . and it is given the faulting address and an indication of whether it was a
read the operation causing the fault or not.

• fault.c:14,15

The routine saves the previous process ‘ps’ state (which would be restored later)
and lets ‘ps’ know that the process is faulting. As you can see, the author
uses psstate to be more descriptive regarding the process state; the process
scheduling state is a different thing.

• fault.c:16

Until now, interrupts were disabled—which also prevented context switches to
a different process. Now that the page fault is being handled (and has saved
cr2), interrupts can be allowed. Servicing a page fault may take a long time.

• fault.c:18

Accounting for the local processor.
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• fault.c:19,38

seg locates the segment where addr stands, if there is no such segment, the
address was outside segments used by the process, and the fault cannot be
repaired (hence the return -1). If the fault was for write and the segment was
a read only segment, the fault cannot be repaired either. Otherwise, fixfault
would do its best to repair the fault—e.g. by allocating a new page frame, filling
it with the contents of the faulting page, and repairing the address translation.
As fixfault may fail due to allocation failures, etc., fault loops until the fault
is either repaired, or is known not to be repairable. Finally, the saved ‘ps’ state
is restored and fault returns 0 to indicate that it repaired the fault (because
fixfault returned zero and the loop was broken).

• ../pc/trap.c:450,459

Before looking fixfault and seg, note that when fault returns, if it returns
zero, the insyscall state is restored, and fault386 returns to trap, which
would return (or context switch to another process) causing a return from in-
terrupt. The iret restores the processor context and the faulting instruction is
retried. However, when fault returns -1, fault386 would either cause a panic
(if the faulting instruction was within the kernel) or post a “sys:trap:fault”
note to the faulting process. That note can kill the faulting process. In our
current example, the fault will be repaired.

seg()Locates a segment given the address.

• ../port/fault.c:359,380

First, fault calls seg with the pointer to the current Proc, the faulting address,
and dolock set to true. seg iterates through the seg array of up, looking for a
segment in use (they have a Seg hanging from seg[]) whose addresses contain
addr (note n->base and n->top). If such segment is found, a pointer to the
Segment is returned.

If dolock was true, the Segment is locked and the check is repeated; to ensure
that the segment was still there and its addresses still contain the faulting
address.

trap...

fault

fixfault() Tries to fix a repairable page fault.

• fault.c:50,51

Should a segment contain the faulting address (seg[ESEG] in our case), fixfault
is called for it. In this case, doputmmu is true—because fault wants the address
translation to be ok for the hardware too.

• fault.c:61,64

va is the faulting address; addr is set to the page address (by clearing the offset
bits). soff is set to be the offset in s for the faulting address. p is a pointer to
the map entry for the segment offset.

Segment maps contain entries relative to the base address of the segment. The
segment offset is used as an address to be translated by the map—very much like



6.2. PAGE FAULTS OR GIVING PAGES TO SEGMENTS 275

the hardware does with its page tables. PTEMAPMEM is the number of bytes ad-
dressed by each map entry (../pc/mem.h:102,103 defines it as 1M, and defines
PTEPERTAB as the number of pages needed to cover that Mbyte).

• fault.c:65,66

One thing which can happen (that’s the case for us), is that the segment does
not even have a map entry allocated for the faulting offset. ptealloc()Allocates

a Pte.

• page.c:466,475

In this case, ptealloc allocates a Pte structure with PTEPERTAB entries to link
Pages on it. This is like allocating the second level page table for the “virtual
MMU” used to implement the segment. All entries in the Pte are still nil.

• fault.c:68

etp is now a pointer to the Pte which should contain the Page structure for the
faulting address.

• fault.c:69

pg is set to point to the entry in pages where the Page for the faulting address
should be. The index is the offset within a map for the segment offset, divided
by the number of bytes in a page. In our case, *pg is nil as nobody allocated a
page for the stack.

• fault.c:70

type contains the kind of segment handled. More later.

• fault.c:72,75

A Pte, contains first and last pointers that point to the first and last used
entries. They are used to iterate through all used pages without having to iterate
through all entries in the Pte—which could contain just a few contiguous pages.
These lines update first and last accordingly.

• fault.c:77,80

How to repair the fault, depends on the kind of segment; note the defensive
programming once more.

• fault.c:82,88

For page faults within text segments, the page should be paged in from the text
file. pio does the job, as discussed later.

• fault.c:90,105

For BSS segments, shared segments, stack segments, and segments mapped
(from devices?), which is our case, the pg is checked. If it is nil, there was no
page for the segment and a new one should be added. This is called “demand
loading” or “zero-fill on demand” depending on whether the new page should be
loaded from a file or should be just initialized to all-zero; the “on demand” part
means that the system does it only when a page fault shows that the process
demands the page involved.
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trap...

fixfault

newpage() Allocates a new page (frame) for a segment.

• page.c:119,131

newpage is called to add a page to the segment at the given page address.
More precisely, the segment had its page “officially”, but that page had no page
frame; newpage allocates a Page that represents a page frame and gives it to
the segment virtual memory page.

Clear was set to true to request the new page be cleared. By now, consider that
there are more free pages than the value of swapalloc.highwater and the loop
trying to allocate a page breaks at :131. Forget most of newpage now, which is
discussed later, but note that by allocating a Page, the author allocates a page
frame too (the one at p->pa).

• page.c:185,197

The other thing of interest for us now is that a reference is added to the Page

(it is being added to a segment), its va is set to the virtual address for the
page, modref set to zero (the cache of the hardware bits in the page table)
and the actual page frame for the page (at VA(kmap(p))) set to al zeroes. The
page frame is allocated for the page, and the page is represented by the Page

structure. More clear now?

trap...

fixfault

newpage() Allocates a new page (frame) for a segment.

• fault.c:100,101

Back to fixfault, after new is our new Page, it could be that newpage did set s
to zero because it had problems to allocate a new page for the segment. In this
case, the fault cannot be repaired and the routine returns -1. Despite fixfault
saying that the fault is not yet repaired, fault retries later–hopefully, a Page

for the segment could be allocated in the future.

• fault.c:103

The entry in the segment Pte for the page (pg) is set to point to the new page.
The segment has a new page which has a page frame for it. The goto does not
need to be there because the case would fall through the next case. Probably in
a previous version there was a goto common at some other point in the routine.

• fault.c:107,108

For our stack segment, a page is allocated on demand if no page was there (the
stack is growing), and the same happens for BSS segments (which are all zero,
so zero filled pages can be allocated on demand). For a page fault on a data
segment, processing would start here.

pagedout()Is the page paged out?

• fault.c:110,111

pagedout (portdat.h:350) returns true if the segment actually has the page,
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but the page is not really in memory because either it was paged out (its page
frame reclaimed for other uses) or it was never paged in (never read from
whatever file it comes from). onswap (portdat.h:349) checks whether the
PG_ONSWAP bit is set in the pointer to the Page; which is the convention for
pages paged out. Thus, if the page was never paged in, pagedout notices that
the pointer is nil and says that it was paged out (it lies). If the page was actually
paged out, its page exists, but the pointer has the PG_ONSWAP bit set. In any
case, the page has to be brought into a page frame, before it could be used. pio
does the job of paging in the page.

In our current example, pagedout would return false.

• fault.c:113,117

If the access was for read, mmuphys is set to be the contents of the page table
entry (for the hardware MMU) for the faulting page. PPN returns the page frame
(physical page) number for the entry, and bits for “read-only” and “valid” are
set on it. Besides, the software copy of the “referenced” bit is set. I defer the
discussion of copymode until later. Just note that if the page fault was because
the page was missing, it is now in-memory, and the “valid” bit is set. The
switch is broken because that is all that has to be done to repair the fault—but
for updating the MMU page table entry.

• fault.c:119,148

The number of references for the page is computed. For us image in the page
is nil, so the number of references is just the ref field in the Page. In our case,
there is just one reference to the page and code in :127,140 does not execute.
As there is no image for this page, only the unlock is done—no duppage called.
All this will become more clear for you later. But let’s concentrate on how are
pages added to our stack segment.

• fault.c:149,151

The fault was for a write access, so fill up the entry (mmuphys) for the hardware
page table with the page frame number and the write and valid bits. The
“modified” and “referenced” software bits are set in modref. putmmu()Updates

an MMU entry.

• fault.c:173,176

If the caller requested that the hardware MMU page table should be updated,
putmmu updates the entry for addr with the the prototype in mmuphys. The
Page structure is passed because on some architectures putmmu might need to
use/update Page information, but that’s not the case for the Intel. After putmmu
returns, the hardware page table has a valid address translation from the faulting
page to the just allocated page frame. fixfault returns zero to state that the
fault was repaired, and fault would return to 386fault which would return to
trap.

At last, the faulting processor context would be reloaded and resumed by the
iret in l.s. In this case, the faulting instruction was one in sysexec.c, filling
up the stack for the process; execution would continue from that point on.
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The processing just described would also be the one when addresses within the
BSS segment are first referenced. The BSS is a data segment initialized to all
zeroes. By attaching pages to it as they are used, and initializing their page
frames to all zeroes, the process can believe that the whole BSS segment was
there right from the beginning. The same happens for stack segments, as you
now know.

6.2.2 Text and data memory pages

trap...

fixfault

• fault.c:83,88

If the process first references a page within the text segment, these lines are
reached. Processing is mostly like servicing a page fault for the stack segment,
but there are important differences. Assuming that the page faulting was never
brought from the text file to the text segment, pagedout would find *pg to be
nil, and return true. pio is called to do page I/O on the text segment. After it
loads the program text that should go in the page from the text file, mmuphys is
updated with a translation to the page frame for reading (that means “execute”
permission too). Later putmmu will install that translation in the MMU page
table.

trap...

fixfault

pio() Performs I/O to do a “page-in” for a page.

• fault.c:180,191

pio tries to get into *p a Page (with the associated page frame) with its corre-
sponding memory filled up according to what is said in s.

• fault.c:192,199

If there is no Page pointer (which means that the Pte had a nil pointer for
this page), the page contents must be brought in from the image attached to
the segment. daddr is the address in disk for page contents. The address is
fstart (the address in the image corresponding to the start of the segment)
plus the offset within the segment for the faulting page. (Remember that there
are different fstart values for text and data segments?). lookpage takes the
Image attached and the address on it, and returns a cached Page for that image
portion. Hopefully, the Image would be caching that page most of the times,
and no access to disk would be required: new would be non-nil and pio is done.
Should new be nil, you have to go to disk to read page contents. This is the if

arm taken for the first reference to a text (or data) page.

• fault.c:200,208

Should there be a pointer to a Page, that means that the page was paged out.
The pointer (as you will see) is not really a pointer to a page, but a daddr with
the PG_ONSWAP bit set. When low on memory, Plan 9 reclaims page frames from
user pages. If a stack or a BSS page is reclaimed its page frame, page contents
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must be stored somewhere else2; i.e. on the swap area. In this case, swapaddr
returns the address in swap where the page copy stands, and lookpage uses
the swapimage Image instead of the segment image. putswap marks the space
allocated for the page within the swap area as no longer used.

Swap space is allocated just to keep the pages moved out from system memory.
Unlike other systems (e.g. some UNIXes), Plan 9 does not keep the swap space
allocated when the page is kept in memory. If the page ever needs to be paged
out again, another piece of swap space would be allocated for it at that point
in time.

• fault.c:211,215

The page was not found in the Image. It is definitely not in memory. A new
Page (with a fresh new page frame) is allocated. The page frame is mapped at
kaddr.

• fault.c:217,252

The page has been first referenced (see above).

• fault.c:218,225

About to read from the channel to the file where s->image memory comes
from. In case of error, release the page just allocated and call faulterror—
which would either pexit or post a debug note. If page contents cannot be
retrieved, there is no much else to do. The routine cannot return by calling
nexterror because, in the end, the faulting context would be reloaded, another
page fault happen, another I/O error for the channel happen, etc.

• fault.c:227,231

The read procedure for the channel is called to read into kaddr (the page
frame), ask bytes, starting at offset daddr (the address for the page in the
file). Lines :227,229 set ask to the page size or the number of bytes from the
faulting address to the end of the segment—whatever is the minimum. The end
of a segment does not need to be aligned at page boundaries. For example, a
compiled file can have initialized variables (data segment contents) which could
occupy just 1K bytes, much less than a page size; it would not make sense to
read more than that Kbyte from the file.

• fault.c:234,235

Remaining bytes in the page (3K in the example) would be set to zero. After
these lines, the page is loaded in memory.

• fault.c:239,251

While the page was being read into memory, the lock on s->lk was released—
reads take a long time. That means that some other process could fault on the
page too, and start to read it too. The first process reaching line :239, would
notice that the Pte entry (*p) is still nil. So that process takes the responsibility
of attaching the page to the segment: its daddr is set to the daddr computed,
cachepage is called to let the Image keep the page cached, and the Pte entry
is set to point to the page. The second process arriving here, would notice

2This also happens for other pages, as you will see
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that *p is not nil, which means that the work is done, so it does nothing but
to return (cachectl is not discussed here). The call to putpage releases the
reference to new, which could cause the page to be deallocated when the number
of references becomes zero.

The author prefers to let one process do some unuseful work some times (when
faulting on a page being faulted by other too), than to keep the whole segment
locked (which would block processes using that segment) just to avoid this (not
so probable) race condition.

One more note, pio does not fill up any MMU page table entry. It just handles
the virtual page table used by the segment, and does Page I/O. The caller
should call putmmu to let the hardware know.

trap...

fixfault

• fault.c:110,111

For data pages first referenced, pio is called too, and processing is like above.

• fault.c:144,145

However, for data segment pages first referenced (unlike stack pages), duppage
is called when there is enough space in the swap area. What is happening is
that data pages can be written. If the data page is written, its contents would
differ from the disk file contents.

Now that the page is still fresh (it is just read), the author prefers to employ a
bit of time and memory to make a copy of the page. The copy is to be kept by
the Image, so that when another process faults on this page, the initial contents
do not need to be read from disk, but from the Image page cache instead.

6.2.3 Physical segments

• fault.c:154,169

If the segment is a bunch of physical memory, servicing the page fault is done
by allocating a Page structure for the physical page already assigned to the
segment. The way to allocate the Page depends on whether the segment has
a pseg->pgalloc function or not. If it has one, it is the provider of Pages,
otherwise a Page is allocated and its pa is set to point to the pseg->pa address
of the segment plus the offset for the faulting page in the segment. Physical
segments are discussed together with segattach.

6.2.4 Hand made pages

main

userinit

segpage() Adds a page to a segment eagerly; not on demand.

• segment.c:222,243

segpage is used only during boot to add a page to a segment. Page is sup-
posed to be initialized by the caller, and segpage only plugs the page in the
appropriate Pte for the segment.
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6.3 Page allocation and paging

You now know that segments are filled up with pages on demand. Let’s see now in
more detail how are page frames allocated when segments reclaim more memory.

6.3.1 Allocation and caching

auxpage() Allocates a page frame.

• page.c:240,246

auxpage is called to allocate a Page structure, along with an associated page
frame. It is used by the code in cache.c to allocate page frames for extents.
Pages come from a free list of pages in palloc. They are taken from head.

• page.c:247,250

freecount was initialized by pageinit to the number of free page frames.
For each page frame, a Page structure was initialized (with its pa set to the
page frame address) and linked into palloc list (palloc.head/palloc.tail).
swapalloc.highwaterwas also initialized by pageinit to be 5/100 of the num-
ber of page frames available for users (not for kernel). So, if the number of free
pages goes down a 5% of available memory for users, auxpage refuses to allocate
one of the (now precious) free page (frames).

When the author uses auxpage, allocation could fail. An example is cchain

(cache.c:383), which does caching only if free pages are available. So, what
is happening is that the kernel cache for remote files consumes only free pages,
but refuses to grow when memory is scarce.

Could the author use virtual pages to do caching? Yes, but in that case they
could go to disk, and reading from a disk can (sometimes) be slower than reading
from the network. Besides, in any case, a local file server can be used to cache
remote files (e.g. cfs).

pageunchain()Removes a page from the palloc list.

• page.c:251

pageunchain (page.c:65,80) removes p from the palloc list and adjusts freecount
(one less page). The list is double linked using the next and prev fields of
Page—to remove any entry. Saw how the routine checks that the palloc lock
is held?

• page.c:253,261

The page should not be used (hence the ref check). A reference is added to the
page, uncachepage called, and the page returned to the caller. The reason to
call uncachepage is that the caller is going to use this page for new stuff. Let’s
see what this means.

Images are used to represent an image in memory (read: cache) of file contents.
You should remember that lookpage is called with an Image and a disk address to
recover a cached Page for that offset within the image. How can that be done?

cachepage() Adds a page as a cache for part of an Image.
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Figure 6.4: Palloc cooperates with Images, so that a cache of pages is kept for
Images. Pages are hashed on their daddrs and maintained on a LRU list.

• page.c:365,385

cachepage is called (as you know) when an image page is read from its file.
It locks the palloc.hash table, and adds the page to the hash bucket for the
page. pghash uses the daddr (ignoring page offset) to hash the page. Since the
page is being kept for caching part of i, its image field is set to point to the
image and a new reference added to the image. The whole picture is shown in
figure 6.4.

lookpage() Lookup a page in the cache.

• page.c:411,439

When later a routine wants a page from the image, lookpage scans the hash
bucket (given the disk address) for a page with the same Image and the same
daddr. If the page is found (note the double check to avoid locking all the pages)
a reference is added to it (:428).

When an image is released by the last segment using it, its pages are still kept in
palloc.hash. If no one is using such pages, their reference count would be zero.
However, such pages still contain file data which would save disk (or network)
reads. Besides being kept in the hash, free pages are linked through the list
starting at palloc.head. The call to pageunchain removes the page from its
list (the palloc.head list). If this is the first new reference, the page must be
removed from the free list, but second and posterior new references would find
the page out of the free list (the page might be reused multiple times if found
by lookpage for different segments).

uncachepage() Removes a page from the cache.
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• page.c:342,363

Finally, pages leave the cache (are removed from the hash) when uncachepage

is called (e.g. after auxpage allocates an unused page for a different purpose).
At this point, the page is no longer caching part of the file image in memory.

To summarize, pages are initialized to represent fresh page frames during boot.
They are allocated later from the free list (initialized at boot) and added to the hash
for use as a cache. When their last reference goes away, they are added again to the
free list. Only when they are used for a different purpose, they are removed from the
cache—in the hope that the same file will be used again (e.g. ls would be executed
once more). As long as there are free page frames, nothing else happens. But what
happens when physical memory is not enough for segment pages and to cache file
contents?

newpage() Allocates a page.

• page.c:118,119

newpage is called to allocate a new page for the given segment.

• page.c:130,133

For user processes, less than a 5% of free user pages is considered as “no more free
pages”; kernel processes would still get their pages until really out of memory.
During this loop, the caller process would be waiting to get a free page for its
usage.

• page.c:135

While waiting, release the palloc lock. This allows other processes to use it
(e.g. to release pages).

• page.c:136,141

If the caller supplied a pointer to its Segment*, which means that it was al-
locating a page for that segment, the author releases the segment lock, clears
the Segment* used by the caller and sets dontalloc. Later, after trying to get
more free pages, the routine would return (:154,161) without trying to allocate
a page. Can you guess why the author does this?

• page.c:142,152

In this critical region, the process calls kickpager and sleeps for a while waiting
for free pages. Hopefully the pager process notified by kickpager would make
more pages available, by stealing pages from someone else. If there are several
processes allocating free pages, they will enter this region too, until the point
when one of the checks at :130,133 succeed.

• page.c:154,161

When memory is considered to be full, the process would loop, waking up the
pager and sleeping for a while repeated times, until the pager gets free pages.
This usually requires disk or network I/O and can be a really slow process. Now,
if the caller is servicing a page fault on a segment, it would make no sense to
keep the whole segment locked just to await for a free page. The segment could
be the text of ls and many other ls processes could perhaps keep on running
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without the faulting page. What the author does is to let freepage release the
lock of the segment (:138), and tell the caller (:139) that the segment is no
longer locked. For example, in fault.c:99,101, fixfault would notice that it
had to wait, and did loose the segment lock, for slow I/O. It would fail and let
fault retry later.

• page.c:166,169

Got some free pages (according to freecount). Get one from the free list. Due
to processor caching issues, not all pages are the same. The algorithm assigns
“colors” to pages, so that it’s best to allocate a “red” page frame for a “red”
page (:127). Only a few colors are needed (like colors in a map).

To remind you, this is because the processor (hardware) cache sometimes use
the same cache entry depending on the (physical, or virtual, depending on the
architecture) address of a page. For example, a processor with two cache entries
(ridiculous, but just an example) could use entry 0 for even page frames, and
entry 1 for odd page frames. If a process is using a data structure between
two pages, it is better to allocate even page frames to even pages, and odd page
frames to odd pages. This way, the two pages can be kept in the processor cache
at the same time. I hope you get the picture with this silly example, but note
that for the Intel, getpgcolor always gives 0 as the color (../pc/mem.h:120).
So the author does no page coloring for the PC.

• page.c:171,176

No free page for our color, just take the first one. ct is used to control the cache.
By now, note that PG_NOFLUSH or PG_NEWCOL is set depending on whether a page
of the right color was found or not.

• page.c:178

The page removed from the free list.

• page.c:180,187

The author checks that the page was indeed free (no references), and removes
it from the cache. This page could belong to a different image and be placed
on the free list by the pager. In any case, the page is going to be used for a
different purpose now.

• page.c:188,189

The page has a cachectl array with an entry per processor. For all processors,
entries are set to either PG_NOFLUSH or PG_NEWCOL depending on the page color.
On Intels, cachectl is not used, but other architectures might use it to deter-
mine whether the cache entry for the page should be flushed or not. This is
because there are architectures that fill up the cache using virtual addresses, if
a page has changed its virtual address (the frame is reused for a different page),
its entry on the cache might need to be flushed if the hardware wouldn’t notice
that and flush the entry automatically.

• page.c:193,197

Zero the memory if requested.
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6.3.2 Paging out

kickpager() Starts the pager process or wakes it up.

• swap.c:90,101

kickpager is used to ask the pager to do its job. Its purpose is to get some free
pages. Because of the static started, the first time the system is running out
of (physical) memory, a kernel process is started to run the pager function3.
Next times, only a wakeup for swapalloc.r is issued. Let’s see pager.

pager() Main routine for the pager process.

• swap.c:103,118

pager keeps running under the loop to get more free pages. To prevent it
from running even when there is free memory, the author makes it sleep at line
:118. It will stay there until awakened by a process calling newpage. When the
first call to kickpager starts the pager, needpages can prevent the pager from
sleeping.

• swap.c:120

The pager will not sleep until it has managed to free some pages.

• swap.c:122

swapimage.c is the channel to the swap file (or partition). If there is such
channel, some pages can be paged out to swap space (i.e. copied to the swap
file and their frames reused as free memory).

• swap.c:123,125

p is going in a round-robin fashion among existing processes. All configured
process entries are scanned (:133,114).

• swap.c:127,128

Dead processes are not using memory and are skipped (note that dead is not
broken), and kernel processes are given kept untouched (they run within the
kernel, don’t they?)

• swap.c:130,131

If canqlock acquires the look, it is the turn for this process to donate some of
its pages to the Plan 9 cause. Otherwise, the process is touching its segments.
Instead of blocking the pager process, the author chooses another victim. Al-
though the algorithm is not fair, it is better to use an unfair algorithm than it
is to let the pager block while free memory is needed.

• swap.c:133,137

Starting to iterate over the process segments, seeking for pages to steal. As soon
as needpages says so, no more pages are stolen. The segment lock is kept for
the whole search.

3The console device may start also the pager.
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• swap.c:139,160

Got a segment for the process (an used entry). Only segment types mentioned
in the switch get pages stolen. pageout is the page thief. When it is a text
page the one stolen, the ‘ps’ state is not changed (because the page comes from
the text file (read-only) and there is no need to maintain the process locked in
pageout for too long. For data pages (including stack and others), the ‘ps’ state
is set to Pageout during the call to pageout and maybe later to I/O, during the
call to executeio. Let’s defer a bit pageout and executeio. As you just saw,
all (user) processes are candidates to get their pages stolen in a round-robin
manner.

• swap.c:164,174

If there is no swap file defined yet, freebroken is called on terminals to kill
broken processes and reuse their memory. On CPU servers, killbig is used
instead. A message is printed to let the user know that either more memory
should be added to the system, or a swap file configured. The call to tsleep

prevents the message from appearing too frequently.

pager

killbig() Kills a big process and reclaims its memory.

• proc.c:1156,1190

killbig locates the process with the biggest memory image (sum of the lengths
for its segments), and kills it. The author knows this is not fair, and prints a
diagnostic to let the user know. However, the author hopes that by killing this
big process, the CPU server could get out of the out of memory condition. Nev-
ertheless, the injured user could ask the CPU server administrator to configure a
swap file if that’s the problem. The action really killing the process is a procctl

order of exitbig, so the process will kill itself later when it checks its procctl.
But in any case, as the memory is needed now, mfreeseg is called to release
the memory of all user segments in that process, so that it be available now;
mfreeseg is discussed later.

pager

pageout() Steals pages from a process segment.

• swap.c:179,180

pageout tries to steal pages from the given process and segment.

• swap.c:186,187

When the author services page faults, lk is acquired and newpage can be called.
Now, newpage can awake the pager which can try to get the lock to do some
page outs—skipping locked segments, (note that this actually means Pte map
locking, and not seg locking).

By using canqlock, the worst thing that may happen is that other segment
is used to steal pages from, not a big deal when compared with a deadlock.
You should note that the pager does not want to block as it should get free
memory soon. Besides, by avoiding races against page operations on the locked
segments, the author can forget about race conditions in that respect.
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• swap.c:189,192

steal is non-zero while procctlmemio (devproc.c:981,1049) is doing I/O
on segment memory. That is precisely to prevent the pager from paging out
segment pages under devproc feet.

• swap.c:194,198

Only if canflush, are pages stolen from this segment. As canflush adds an
extra reference to the segment, putseg must be called to release the reference.
The reference avoids segment deletion while it is being used to page out some
of its pages.

pager

pageout

canflush() Anyone running on pages from this segment?

• swap.c:235,265

canflush returns true if canpage returns true for all (alive) processes using the
given segment. When there is more than one reference, all processes must be
searched to find other users of the segment.

• proc.c:283,299

canpage returns true only if the process is not running, and it sets newtlb to
true in such case.

What is going on? If the process is running (pager is just another process, and
there can be multiple processors), the author refuses to check if the page is
really being used or not. It is more simple to remove pages from processes not
running (note the mach check!). When the process runs again, it will notice the
newtlb flag and flush its MMU (because page translations are going to change
in pageout). So, only when none of the processes using the page is running,
can pageout steal the page.

What if a process which said it canpage runs after the call to canpage but before
pageout completes? That is no problem, mmuswitch would notice newtlb and
will call mmuptefree to set as invalid the entries in the MMU page table for every
user page in that process. So, pageout really hurts to the process affected. Even
if it gets just a few pages paged out, it will suffer many page faults.

pager

pageout

• swap.c:207,228

For all (user) Pages in the segment (first and last are used to avoid scanning
all the map entries), if the Page is pagedout (never paged in, or paged out) it is
ignored. If the page has the referenced bit set, it is forgiven and it has a new
chance to be referenced again before the next pass of the pager for this page.
If the page is not referenced (or was forgiven and not referenced again before
being reached once more), pagepte steals the page. This is a second-chance
paging out policy. If the author did not forgave pages referenced, pages really
in use by the process could be paged-in soon, and then paged out again, and the
system could end up trashing (it would do nothing else but to service page-ins
and page-outs).
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• swap.c:225,226

ioptr points to the current page I/O transaction. If nswppo page I/O requests
are in place, the system refuses to do more page I/O. I think that the author tries
to avoid trashing here too. If after finishing the current transactions, memory
is still scarce, more page outs would happen. Another good reason not to do
too much I/O to get free memory is that the user is waiting for his application
to run, and the application is waiting because the processor is being used for
the pager too.

pager

pageout

pagepte() Updates a Pte for a page out, adding the page to the I/O list.

• swap.c:267,274

Paging out a page. A pointer to the pointer used by the caller is passed, so that
pagepte can update it for the caller.

• swap.c:275,278

If the page is a text page, it can be paged-in later from the text file. The caller
Page* is cleared and the reference to the page released. That’s all to do here.
This is the reason why psstate was not changed for the process while doing a
page out. Because, in fact, there are no “page outs” for text pages, they are
simply discarded.

• swap.c:280,290

For these segments, a copy of the page memory must be made before reusing
its frame. newswap allocates a new disk address (within the swap file) where to
copy the page.

newswap()Allocates space for a page in swap.

• swap.c:35,56

newswap scans a bitmap swapalloc for a zero byte—which represents room for
a page in the corresponding offset for the swap file. last and top are used to
do kind of a next-fit policy for swap space allocation; last is kept set as the
last slot found at look. Initially, last is initialized to point to the start of the
“byte-map” in swapinit. Line :51 is marking the byte as allocated. The author
trades space for time, by using bytes and not bits in the map. It is more simple
to use a whole byte than it is to use a bit (it should be masked and checked).
Memory is cheap these days.

By the way, now you can understand why fault.c:122,123 called swapcount

to account extra references for Pages that had swapimage as their image.
swapcount (swap.c:84,88) returns the “1” or the “0” in the swap “bytemap”
entry for the page. So, code in fault.c:122,123 accounts one extra reference
for a swap file Page if the swap bitmap states that such page is being used. As
you will see soon, when (non-text) pages are paged out, their ref could reach
zero.

• swap.c:291,292

newswap returns -1 (in two’s complement, note the unsigned return value from
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newswap) when there are no more free swap slots for pages. The routine refuses
to page out if there is no place to copy page contents.

• swap.c:293

cachedel removes any cached page for the swap image at disk address daddr.
Remember that lookpage can try to get a cached page for a disk address? In
the past, this disk address could haven been used to keep other page, and it
could be that the palloc hash (cache) still has a cached pages pretending to
be the contents for this file slot. No longer the case. The pages caching daddr

would still be in the free list, but it would not be in the hash list any more.

• swap.c:295,298

In the same way, the page being paged out can be linked into the palloc hash,
as a cache for part of its image. uncachepage removes the page from the hash,
and sets its image and daddr to zero. Now the page is no longer for its old
image—uncachepage expects the page to be locked.

• swap.c:300,317

The comments say it all. But note that PG_ONSWAP is set (see pagedout). Al-
though the page is not yet sent to the swap file, the kernel considers it as
swapped out. The space for the pointer to the Page in the segment is used to
keep the daddr for the page in the swap file.

Now pagepte completes and pageout would perhaps loop adding more I/O
requests to iolist by calling pagepte more times. When the configured I/O
limit is reached, or when the segment is entirely scanned, pageout completes
too. Later, lines :154,156 would call executeio.

pager

executeio() Performs I/O for page outs.

• swap.c:331,366

All I/O requests placed in iolist are serviced at a go. For each page set in
iolist, kmap is called to set a temporary mapping so that write can be called
for the swap file channel to write the page contents. The segment reference to
the page is not released (putpage called) until write returns; i.e. after page
contents are safe in swap. Besides the segment (Pte entry) reference, there
was another extra reference which is removed at :361. As the process had the
segment unlocked before executeio executes, the segment could call putpage
on its own.

If you look at putpage, (page.c:209,238), you will see that it checks the
PG_ONSWAP bit and calls putswap to release pages with the bit set. However,
pagepte did set the bit in the Segment pointer to the page, but not in the
iolist pointer to the page. Therefore, the putpage call from executeio really
does a putpage.

By deferring page I/O requests until after the segment is unlocked, the time
the segment lock is held is reduced a lot (I/O takes a long time). In the mean
time, processes could service other page faults for the segment. This is very
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important since mmuptefree clears page table entries for the process affected
and it will have to service many page faults for the segment.

As a final comment, note that the PG_MOD bit is not checked to avoid calling
write for a page which has not been modified since it was last read (e.g. from
the data section of the text file). Although that could save some I/O, the
author probably thinks that it is not worth to do so. Take into account that he
duplicate made for data pages before they could be written helps here.

Should the author change his mind in this respect, pages backed up by swap
space would need to keep swap space allocated even while in memory, so that
pages not changed since their last page-in could be discarded without I/O.

6.3.3 Configuring a swap file

syswrite

conswrite

• devcons.c:847,864

A swap file is configured by a write to #c/swap. Usually, the string written is
the number of an open file descriptor for the file to be used as a swap area. A
write of the string start would kickpager instead of configuring the swap file.
For CPU servers, only the boot user (Eve) can configure a swap file—otherwise,
any user could read memory from other user’s processes by configuring a swap
file and forcing the server into a low-memory condition. Since terminals run
processes on the name of eve, the author does not check anything for them.
The work is done by setswapchan.

syswrite

conswrite

setswapchan() Configures a swap channel.

• swap.c:374,403

The important work is done at line :402. Lines up to :386 take care of uncon-
figuring a previous swap file if it was not used (All nswap pages are free); the
new file will be used instead. Lines :392,400 limit the number of pages in the
swap file to be those that fit in the partition. Surprisingly, if a previous swap
file existed, nswap would only decrease, and not increase. It will always be at
or below the value configured at boot time. By the way, the check for ‘M’ is
because all ‘files’ come from the mount driver—this is a CPU/terminal kernel;
so, if the device is not #M, it is likely to be a kernel device who provided file,
and that’s usually a disk partition. Perhaps a more explicit check against the
storage device could be made—but what about using a kfs file? Hint: what if
kfs data was swapped out?

6.3.4 Paging in

You already saw most of the code needed to page-in some pages for user segments,
while learning how are pages added to segments: Plan 9 uses demand load for pages.
Let’s see now the part of the code we didn’t read.
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To remind you, fixfault called pio to do a page-in for the faulting page. You
saw how the cache for the image (or the swap file image) was tried by pio, and how
pio worked when there was not a Page for the page.

trap...

fixfault

pio

• fault.c:253,269

Now, when it appears to be a pointer to a Page hanging from loadrec (from the
segment map), the page faulting was paged out. Moreover, the page faulting is
not a text page because text pages have their Pages deallocated on page-outs.
So, the page must be read from the swap file pointed to by (swapimage.c).
Remember that at this point in pio, new has a fresh page (frame) to be used
for the faulting page.

The calls to qlock/qunlock within the error recovery block at lines :258,259

seem to be to wait until sure that no other process is holding the lk lock.
This routine acquires that lock. faulterror can call pexit to kill the process.
Therefore, if the I/O fails to do a page-in, the process is killed after nobody is
running within the critical region.

• fault.c:271,286

During the call to read (which can block), the segment was unlocked. Another
process could initiate a page in. This case is easy to check because it that did
not happen, loadrec would still be *p, the entry in the Segment. If loadrec

differs, that must be because at line :290 the other process did set the entry
to the page it allocated. The first one getting past line :269 wins. If another
process did the page-in, the routine releases the page allocated (and read!!) by
this process: all done. It could also be that the pager stole this page, which is
known because pagedout returns true (and *p changed too!). In this case the
page has to be paged in again, hence the goto.

Perhaps the author could save some reads by allowing at most one process to do
the read for a page-in. Nevertheless, it is not clear that would be worth because
several processes must be faulting on the same page for it to be worth. Besides,
the saved time would be minimized because of caching. Remember? Measure
and then optimize, not vice-versa.

6.3.5 Weird paging code?

If you are curious, you already noticed how there are still portions of paging code
that remain to be read. In particular,

trap...

fixfault

• fault.c:113,117

This code restores the hardware MMU permissions for the faulting page when
it is a read-fault and copymode is zero and avoids doing any other thing.
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• fault.c:127,140

This code does something which is not calling duppage when there is more
than one reference to the Page (including as references pages swapped out). If
you look at the code, it allocates a new page and calls copypage to install a
translation to a copy of the faulting page.

To understand what is going on, you must read dupseg first. That procedure
clones a segment during a rfork.

6.4 Duplicating segments

sysrfork()

dupseg() Duplicates or shares a segment.

• segment.c:143,144

During rfork (sysproc.c:107), dupseg is called to duplicate a segment or
request that it be shared with the parent process. seg is the process segment
array. The routine is expected to return a pointer to the duplicated/shared
segment.

• segment.c:153

Segments are duplicated one way or another depending on the kind of segment.

• segment.c:154,159

For segments that are read-only (text), shared (SG_SHARED and SG_SHDATA), or
physical memory (which is shared), the reference count is incremented and the
parent’s segment is used as-is by the child. It does not matter what share says.

• segment.c:161,169

Stack segments are never shared. newseg creates a new stack segment with the
same base and size as the original segment. This new segment is still empty
(although it should be a copy of the parent’s stack).

• segment.c:212,219

Later, dupseg calls ptecpy to copy each Pte in the original segment to the new
(duplicate) segment. Let’s see what happens to other segments before looking
at ptecpy.

• segment.c:171,186

For BSS segments (and MAPs), one of two things can happen.

If the segment is to be shared, and nobody is sharing the segment (its reference
is one), the segment type is changed to be SG_SHARED. From now on, calls to
dupseg for this segment would just add another reference, as seen before. You
now know that a SG_SHARED segment is a BSS or MAP segment that is being
shared. The routine adds the extra reference and returns the segment as the
duplicate one.

If the segment is not to be shared (!share) a new segment is created, and later,
ptecpy would copy Pte entries for the new segment. Let’s see now ptecpy.
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sysrfork()

dupseg

ptecopy() Copies PTE entries.

• page.c:442,464

ptecpy is an innocent looking function, which allocates new Ptes for the dupli-
cated segment and iterates through all (used) Pages in the old Pte. For each
entry used, if the page was swapped out, dupswap is called. But otherwise, an
extra reference is just added to the Page, and the the Page* in the destina-
tion entry is copied from the source entry! Noticed that the segment is being
duplicated, although Pages are shared? Although the duplicate segment was
expected to get a copy of the pages, it gets the same pages. What’s going on?

The duplicated segment has no real MMU page table entry updated, so it is
going to page fault on the pages “copied”, although its entries are set in its
Ptes.

trap...

fixfault

• fault.c:126,141

When the process later has a page fault due to a write on the “copied” BSS
segment, the page has more than one reference (for read accesses, the MMU
entry is given read permission and nothing else is done).

In this case, fixfault knows that the extra references are there because al-
though the page is being shared, it should not be shared officially (pages really
shared on shared segments have a reference count of 1, it is the Segment that
has the reference count bigger than 1). This is called “copy on write”, or COW.
When the segment is duplicated, the segment and its Ptes are duplicated, but
the pages are shared (with a reference count bigger than 1). On a (write) page
fault, the page is copied (copypage) to a new page frame (new), and the new
page is given to the faulting process. there is a call to putpage because this
process is no longer using the shared copy of the page. In figure 6.5 you can see
a COW segment and a shared segment.

If other processes copied the segment (on write), the number of references in
the page after putpage is still greater than one, and more copies will be made,
if the page is referenced. If no other process is sharing (copying on write) the
page, its reference is one, and lines :143,150 would execute instead: the page
is used as is, after saving a copy for the image cache and restoring permissions
in the MMU entry.

The check for copymode at line :113 is deciding when to really copy the page. I
have been saying that the page is copied on write. I lied. Only when copymode

is not-zero is the kernel restoring MMU permissions (without any copying) for
read faults. When it is zero, even a page fault for reading causes the page to be
copied. So, if conf.copymode is zero, Plan 9 does copy on reference, otherwise,
copy on write is used.

copymode is zero unless archinit or mpinit set it to one, which happens only for
multiprocessor machines. So, Plan 9 uses copy on reference for monoprocessors
and copy on write for (Intel) multiprocessors.
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Figure 6.5: A copy on write (or copy on reference) segment is like a copy of another
segment: but both segments share unmodified (unreferenced) pages. This is not to be
confused with a shared segment. The figure shows how each Page has an associated
page frame.
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It is clear that the copied segment has all its MMU translations invalid; but
what about the original segment copied on write? Any write to its pages should
also cause a page fault, but since the segment was read/write, translations would
still have write access in the MMU.

• sysproc.c:182,187

Is it clear the comment now? All translations are set invalid by flushmmu. Page
faults for read would just repair the MMU translations. Page faults for write
would copy the COW pages. Although it would be faster to downgrade the
translations to read-only for COWed segments, the author prefers to keep the
code simple. Should this be a performance problem, perhaps flushmmu would
be replaced by a more clever routine which could downgrade entries too.

sysrfork()

dupseg

• segment.c:188,211

Ignore the data2txt thing. If the segment is to be shared, add a reference to it
and change its type to SG_SHDATA; you now know what’s a SG_SHDATA segment.
If the segment is not being shared, but copied, COW is used and a new segment
is created as before. The difference with respect to COW for BSS segments is
that the image is added an extra reference and attached to the segment too.
BSS segments have their storage initialized to zero, and they are never paged
in from any image (well, they are paged in from swap, but you know how that
is done). On the other hand, data segments page their pages in from the image
corresponding to the text file with initial contents for the data segment. Even
though the segment is COW, the copied segment should also page in from the
image those pages which have never been referenced. So, the segment must be
attached to the image too. Besides this reason, it is good design to keep the
copied segment attached to the same image, as it would be if it was the original
segment: it is a copy, isn’t it?

• segment.c:189,190

Back to the first two lines, you must read a bit of devproc to understand what
is going on.

procctlmemio()Does I/O to memory of a process.

• devproc.c:998,999

If procctlmemio is servicing a write for the text segment, it calls txt2data.

txt2data()Replaces a text segment with a data segment.

• devproc.c:1051,1078

txt2data takes a text segment and replaces it by a data segment. The data
segment is a regular SG_DATA segment but, if the text segment was the one in
seg[TSEG], the entry in TSEG now contains an SG_DATA, which is not usual.
As a data segment, it accepts writes, and that seems to be the reason why the
author is replacing an SG_TEXT with an SG_DATA. Although the author could
have set a mode field in Segment, and provide some means to change it, it is
more clear to have the type of the segment determine what can be done to the
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segment. As this kind of write seems to be most useful for debugging, it is not
likely to be a frequent operation and its efficiency is not an issue.

It is useful to be able to write to the text segment to change instructions, and
to set breakpoints on it.

• segment.c:189,190

However, if the process forks, the child should get its regular SG_TEXT segment
in TSEG. dupseg knows and calls data2txt to recover the text segment corre-
sponding to the weird data segment.

data2txt()Restores a text segment from a replacement data segment.

• devproc.c:1080,1093

The only thing data2txt does is to recreate the text segment from the image,
as happened before during exec.

By the way, the checks for ref==1 besides checking share during dupseg seem to
be more of defensive programming; since the segment type would be changed just the
very first time. But I may be missing something here.

6.5 Terminating segments

putseg() Drops a reference to a segment.

• segment.c:83

When a segment is being released, putseg drops the reference to it.

• segment.c:91,100

Segments and images are linked circularly, the convention is to lock the image
before the segment. If the last reference to the segment is being released, it will
go away and the image should no longer point to the segment. In this case,
i->s is cleared.

• segment.c:108,123

The last reference is going. The routine clears this thing up, including a call to
putimage, if there is an image attached. putimage does not call to putseg to
release its reference to the segment. You know why, don’t you?

putseg

putimage() Drops a reference to an image.

• segment.c:385,391

putimage releases the image. It does nothing for images with notext. You
already saw in the starting up chapter that notext was set for the first process
text image; it is also set for the swap image by swapinit and for the fscache

image used to cache remote files in cache.c.

• segment.c:394,426

For images with “text”, after their last reference is gone, their QID is cleared,
and their channel to the text is closed. The Image is also removed from the
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Image hash table and linked to the free list (attachimage would no longer find
this image when searching for other users of the same text). One thing to note
here is how the channel is not really closed here, but placed into freechan

(which is resized on demand) to be closed later. Closing a channel may block
and also may take a long time. The author wants that to happen after all locks
have been released.

attachimage

imagechanreclaim() Releases channels used for images (as well as images).

• segment.c:358,382

imagechanreclaim is the routine actually calling close for these channels. It
is called from attachimage. Read the comment regarding locks, it is very
explicative. Although keeping these channels open require file servers to keep
resources that are not really useful ( channels are about to be closed), the author
prefers to close the channels on calls to attachimage rather than after calling
unlock in putimage. One fine reason can be that putimage is also called during
page faults (which already may take a long time). Perhaps the pager could be
also in charge of closing image channels.

By the way, you now know why imagereclaim puts pages instead of images to
get some Image structures released, because pages keep the cached contents of
the image and the image will not go away until all its pages have been released.

putseg

• segment.c:112,115

Back to putseg, freepte releases the Pages used by the segment.

putseg

freepte() Releases pages in a Pte.

• page.c:478,516

For physical segments, a pgfree function is called to deallocate pages (in the
same way that the pgalloc routine was used by fixfault). Besides calling
pgfree, the Page reference count is decremented and it is freed if no more
references. putpage is not called, because the physical segment allocates and
deallocates pages in a rather specific way.

• page.c:508,514

The usual thing. putpage is called for all Pages found in the segment.

putseg

freepte

putpage() Releases a page.

• page.c:208,238

if the page was swapped out, p is not a pointer to the page, but a swap address.

putswap()Releases a swapped out page. putswap (swap.c:58,73) marks the
swap page as no longer allocated in the swap “bytemap”.
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Otherwise, p can point to a real Page, and reference counting is used. If the
image for the page is not swapimage, the page is linked to the tail of the free
list, otherwise it is linked to the head. Since pages are allocated from the head,
the author is trying to keep the page in the list for a longer time if the page still
caches part of a image. Since the swap image is just used as backing storage,
their pages are to be reused soon. It should be clear now, but note how the
page free list is actually used as a cache.

Finally, the author wakes up a process that was sleeping waiting for pages—
if any. The reason to wake up a sleeping process is that there is now a free
page available for allocation (Remaining requesters could still be blocked in
palloc.pwait, only one of them did pass and sleep in palloc.r). The reason
not to issue the wakeup when no process is sleeping is that in that case, nobody
is waiting for memory. Nevertheless, wakeup would no nothing in that case
and calling it wouldn’t hurt, or did the author measure that it would hurt
performance? Or am I missing something here?

Segments are usually released by putseg, however, there is another routine (the
one called by killbig, which you already saw) that is called to release memory held
by a segment. It is also used by a couple other routines besides killbig.

mfreeseg() Releases the memory used by a segment.

• segment.c:503,536

First, mfreeseg scans all entries in the segment that are for the pages starting
at start. Unused map entries are ignored (they have no memory to free); all
entries in the segment Ptes are set to nil and pages kept linked at list.

• segment.c:537,551

Second, mfreeseg calls putpage for all pages linked (all segment pages). Before
doing so, procflushseg is called if the segment is shared. The reason is that
when the segment is shared, page reference counts are one, but pages should not
go away before letting all processes using the segment know that the segment
memory is being released. Other processes using the segment could be even
running right now at a different processor.

mfreeseg

procflushseg() Flushes MMU for processes using the given segment.

• proc.c:973,998

procflushseg iterates through all processes, searching for seg entries with the
s segment. newtlb is set for all processes with such a segment, so that its entries
are invalidated before it runs again. Besides, (:991) if the process is running at
any processor, flushmmu is set for that processor and nwait incremented.

• proc.c:1007,1001

If nwait was not zero, the current process waits until flushmmu is reset to
zero for all processors. The current processor can only ‘kindly request’ to other
processors that their MMU entries be flushed, they are running and they will
flush such entries when they notice the flushmmu flag. Hopefully, that will
happen soon.
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6.6 Segment system calls

You now know how typical text, data, bss and stack segments are created, copied
during rfork and how are page faults serviced. That is most of what you should
know about memory management. However, there are several system calls related to
memory management that remain yet to be seen.

6.6.1 Attaching segments

syssegattach() Entry point for the segattach system call. Attaches a new segment.

• sysproc.c:614,618

syssegattach is used to create a new memory segment. System call arguments
are passed verbatim to segattach.

syssegattach

segattach() Attaches a new segment.

• segment.c:600,601

It is segattach who does the job.

• segment.c:607,608

va is given as zero when segattach should choose the address where to map
the segment in the process address space. If it is not zero, the author checks
that the address is not a kernel address. I don’t know the exact reason for the
“BUG” comment, but it seems to me that the author plans to be able to attach
segments within the address space of the kernel.

• segment.c:610,611

Checking that name is a null terminated string at existing virtual memory.

• segment.c:613,615

sno is the slot for the new segment. The first empty slot is used. The check
for ESEG at line :614 is ensuring that the “extra segment” used during exec is
kept available. Otherwise, the process could not use sysexec.

• segment.c:617,618

No more segments for this process.

• segment.c:620,622

len is now an integral number of pages.

• segment.c:624,642

The comment is very descriptive. It is very likely that a big hole exist in virtual
memory right below the user stack. Most checking is done by isoverlap. By
the way, wouldn’t it be better to ensure that virtual addresses used by ESEG

are kept unused? It doesn’t matter too much because that portion of the user
address space is used while the maps are set for the temporary stack mapping.

isoverlap()Would the segment overlap with an existing one?



300 CHAPTER 6. MEMORY MANAGEMENT

• segment.c:554,571

isoverlap must iterate through the whole segment array for the process, check-
ing that neither va nor newtop are contained within any segment. During all
this time, seg is not locked. However, only the current process could deallocate
its seg entries or attach new entries, and the current process is currently doing
the segattach, so the lock is not really needed. Nevertheless, the lock could
prevent future BUGs, in case the author changes his mind and uses segattach
for a non-current (not up) process.

• segment.c:644,646

A hole found, isoverlap is called once more after rounding va to a page bound-
ary. Perhaps va should be truncated before line :634, and these lines avoided.
Besides, it is not clear for me why Esoverlap (and not Enovmem) is raised, al-
though the author knows why, I think that Enovmem could be perfectly raised
here too.

• segment.c:648,650

name is the segment “class” specified by the user. On each machine, an array
of physical segments is kept at physseg. If the segment class name matches
the name of one of these physical segments, the routine continues at :653.
Otherwise Ebadarg is raised. You see how a segattach can only be done for
segments declared in physseg. By the way, since the found label is used only
to avoid returning Ebadarg, perhaps an if could have been better. The code is
clear anyway, isn’t it?

• ../pc/segment.h:1,8

For Intel PCs, the only known segments are “shared” and “memory” (there are
more ones, as you will see). But for other architectures, physseg may contain
exotic physical segments (read the manual page). I think that the name is phys
because usually, processes attach to segments representing physical memory like
device-provided memory, memory locks, etc.

• ../port/segment.c:654,664

Unless the segment length be bigger than SEGMAXSIZE, the segment is attached.
newseg is creating the new segment, it will be either a SHARED or a BSS segment,
and page faults with zero fill it on demand.

Physical segments

addphysseg() Adds a new segment class.

• segment.c:573,598

I told you that ../pc/segment.h had just a couple of “shared” and “memory”
segments (classes) defined. There is a routine addphysseg which is called by
device drivers to declare the existence of physical memory segments important
for them. For example, in ../pc/vgas3.c:103, the S3 video card driver calls
addphysseg to add an entry to physseg, with attribute SG_PHYSICAL (physical
memory used for the card) and name s3screen (the video memory). This
call is done by s3linear, which is the S3 VGAdev procedure used to enable a
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linear mode in the card (see ../pc/devvga.c and ../pc/screen.c). After this
segment is added by calling addphysseg, a segattach can be done for s3screen
to get to the video memory.

The routine addphysseg only checks that there is free room after the initialized
entries (those with a name) and before the last entry (which must be a null
entry) to add the new segment. Should there be space, the new segment given
is linked into the array.

6.6.2 Detaching segments

syssegdetach() segdetach(2) system call. Detaches a segment.

• sysproc.c:621,631

syssegdetach is the counterpart of syssegattach. It detaches a segment from
the address space. The seglock must be acquired now. Routines that do not
want seg entries to disappear under their feet acquire this lock too.

• sysproc.c:633,644

The first argument is an address contained in the segment to be detached. The
seg array is searched until the entry number (i) is found and s is set to the
segment being detached.

• sysproc.c:646,651

arg is a pointer to the user arguments for the system call, therefore it resides
within the user stack. if this address is contained in the segment to be detached,
it is the stack segment the one detached. In this case, the system refuses to
detach the segment. A process always needs a stack. Although the check is
nice, perhaps a check against SG_STACK would be more clear.

The system does not seem to refuse detaches for the text segment, although the
manual page suggests so.

• sysproc.c:652,660

The segment is released by the call to putseg.

By the way, perhaps a segdettach routine could contain most of syssegdetach
code, as it happens with segattach.

syssegfree() segfree(2) system call. Releases (part of) a segment.

• sysproc.c:664,686

syssegfree releases (note the call to mfreeseg) part of the memory held by
the segment. This routine calls seg instead of locating the segment itself to
find the segment containing from and lock it. Perhaps the routine could be
generalized to return the index for the segment in the seg array so that others
(e.g. syssegdetach) could benefit from it too. What happens to the portion of
the address space released depends on the kind of segment. For instance, should
it be a BSS segment, pages would be later zero-filled on demand.
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6.6.3 Resizing segments

syssegbrk() segbrk(2) system call. Resizes a segment.

• sysproc.c:588,608

syssegbrk resizes the segment. Only SHARED, BSS, and SHDATA segments can be
resized. The reason is that text and data segments correspond (and are paged
from) an image of a text file. Only for “anonymous memory” does brk make
sense. ibrk does all the work.

syssegbrk

ibrk() Resizes a segment.

• segment.c:431,454

addr is the new end address for the segment. If should be at least the segment
base. The comment says that BSS might be overlapping the data segment, in
which case :449 is checking that addr is smaller than base for a BSEG and addr

is bigger than base for the DSEG (otherwise an error is raised). However, segbrk
finds the first segment where addr is contained, and :448 would never be true.

Nevertheless, in a previous implementation of segbrk (note :sysproc.c:688,693),
the segment resized was always the BSS segment, in which case :448 could be
true for old Plan 9 binaries and lines :448,454 would leave addr being the start
of the BSS segment. Perhaps it would have been better to let sysbrk_ do the
check, and either keep ibrk assuming that addr always resides within segment
bounds, or keep ibrk checking that addr is within the segment. The reason for
doing so is that should sysbrk_ disappear, the weird BSS check in ibrk may
be forgotten and kept there.

• segment.c:456,463

The new top and size for the segment is computed. If the segment is to
shrink, mfreeseg releases the (now unused) memory of the segment. Since
segment base and top are not updated, any page fault on the released part
of the segment would make the segment grow again. Perhaps lines :494,495

should be copied before line :462. Although the current behavior is perfectly
reasonable (and compatible with what is said in segbrk(2).).

• segment.c:465,468

The segment is growing. Since the only segments resized (sysproc.c:600,607)
are SHARED, BSS, and SHDATA segments, which have the swap file as their backing
store, no resize is allowed if there is no free swap space.

• segment.c:470,478

The whole list of segments is scanned searching for a segment containing newtop.
If newtop is not contained within other segment, the space from the current
top up to newtop is available. However, there could be a case when there is a
segment starting after top, but ending before newtop, in which the check would
miss that there is another segment overlapping the portion of the virtual address
space being allocated. Perhaps the check could be changed to see if base for
any segment is between top and newtop.
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• segment.c:480,492

mapsize recomputed and map is reallocated to have enough space for the new
Ptes—map could be using the small ssegmap array.

• segment.c:494,497

Segment bounds updated. Segments grow, but they really never shrink—only
memory is reused if they are pretending to shrink.

6.6.4 Flushing segments

syssegflush() segflush(2) system call. Flushes a segment cache.

• segment.c:681,729

syssegflush does a flush of the processor cache for memory within the segment.
This seems to be used only by instruction simulator commands. The routine
flushes a range of the user address space, which may spawn several segments.
For each segment, pteflush is called to flush Ptes affected.

syssegflush

pteflush() Flushes the cache for a Pte.

• segment.c:667,678

pteflush sets the cachectl entry for the page (if not paged out) to PG_TXTFLUSH.
As you may remember, this means that for several architectures (not the In-
tel), the processor cache entries for the given pages may be flushed later by the
flushmmu call at :727.

6.6.5 Segment profiling

segclock() Update segment profiling counters.

• segment.c:731,745

Not really a system call, but each time the clock ticks, if the processor was run-
ning user code, ../pc/clock.c:76,79 would call segclock giving the current
saved program counter for the user process. The call is made after adding to
the word in the bottom of the user stack the number of ticks in a millisecond.
The kernel is maintaining a “clock” for the running process in the bottom of
its user stack. If profile is set in the TSEG for the process, segclock adds the
time passed to the value in s->profile[0]. Moreover, if the program counter
for the user was within this segment, it is converted to a relative offset within
TSEG and another time counter incremented. The >>LRESPROF is used to have
one time counter per LRESPROF instructions in the text segment.

If you think of it, the author is filling up profile with an array of clocks for
the process. The first clock counts the time the process has been executing (one
ms added every time a ms happens and the process was running), following
clocks have the time spent by the process within the first, second,. . . group of
LRESPROF instructions. The user can later inspect these clocks and learn where
is his program spending time. This is crucial to let the user know what should
be optimized, and what not.
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6.7 Intel MMU handling

During the chapter about system startup you already read some code for MMU han-
dling in the Intel PC. In this section you will be reading the code which has been used
by the machine independent code for memory management, and was not discussed
previously.

6.7.1 Flushing entries

flushmmu() Flushes MMU translations.

• ../pc/mmu.c:80,89

flushmmu was called whenever the page table was changed, and translations
should be updated. Remember that the TLB may keep cached entries. All it
does is to set the newtlb flag and switch to the current page table. On the
Intel, a load of the page directory base register flushes the TLB too.

flushmmu

mmuswitch() Switches the address space in the MMU.

• mmu.c:110,127

mmuswitch (in this case), notices the newtlb and calls mmuptefree to flush the
current set of entries. Later, the switch is done. As you should know by now,
if the process has a mmupdb installed, that page table is used, otherwise, the
prototype page table for the processor is used. The virtual address of the Page

used to keep the first level page table is used to access its entries, and its physical
address is used to set the pdbr (aka cr3).

One important thing here is that the routine maps the Mach structure (together
with the small scheduler stack) for the current processor at MACHADDR. PDX is
getting the index in the first level page table for the virtual address MACHADDR.
Each processor has at MACHADDR a map of its Mach, as you saw in the starting
up chapter.

flushmmu

mmuswitch

mmuptefree() Releases translations.

• mmu.c:91,108

mmuptefree starts with the Page noted in mmuused, and iterates through the
whole set of pages linked through the next field. For each such page, its entry
in the pdb is set to nil (i.e. invalid). pdb is set to be the virtual address of
the mmupdb, to update later its contents. The Page keeps in daddr the index in
the PDB for it. mmuused is a list of Pages used to keep secondary page tables
for the process. So, mmuptefree is just clearing (invalidating) entries in the
first level page table. Al those pages are linked later into mmufree. All second
level page tables linked through mmuused are free now. The process will have to
suffer page faults to get new second level tables again. This time, the machine
independent MMU code will instruct mmu.c to fill up the entries according to
changes in the Segment entries.
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Can you see how the portable virtual memory data structures dictate what the
machine dependent code should do? Can you see how they can differ from what
the MMU has installed?

• dat.h:90,95

mmupdb, mmufree, and mmuused are just Pages. The fields va and pa of such
pages are used to update entries using the virtual address space and to get the
page frame address for giving it to either the MMU or to an entry in PD. (By
the why, see ../port/portdat.h:628 if you don’t understand why I told you
to look into PMMU and not into Proc).

6.7.2 Adding entries

putmmu() Updates a translation.

• mmu.c:195,196

putmmu is called by the machine independent code to add an entry to the MMU
page table for the current process. This happens when fixfault is repairing a
page fault. How does this work?

You know that each processor has a prototype page table, which includes map-
pings for kernel space as well as an identity mapping for physical memory. The
kernel uses this prototype page table if the process has not its own one. So,
when a new process is created, it starts using this page table until it suffers a
page fault and fixfault calls putmmu.

• mmu.c:203,204

If the process did not have its own page table, one is created. mmupdballoc

does the job. Following calls to putmmu due to page faults will find (and use)
the existing PDB allocated here.

mmupdballoc()Allocates a PDB .

• mmu.c:173,193

mmupdballoc takes a new Page, either by allocating it (with newpage) or by
using one from a free list at pdbpool. va is set in the Page as the kernel virtual
address for the page frame and the page is kept mapped for kernel usage (no-
op on Intels). It is initialized by copying the prototype page table from the
processor, which you know was initialized. Initialized PDBs are placed back
to the pdbpool when they are no longer used by the process, so that their
allocation could be faster. Since newpage is given a nil s pointer, it will keep
on trying to allocate a page instead of returning failure (as it does when called
from fixfault).

• mmu.c:205,206

Back to putmmu, pdb is now a kernel pointer to the PDB and pdbx is the entry
in the first level page table for the virtual address to be mapped to pa using the
Page supplied (note it’s not used on Intels).

• mmu.c:208,217

If there is no second-level page table (entry invalid in the PDB), must allocate
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one. They are allocated on demand. Again, Pages for second level page tables
are reused. If there is one in the free list (mmufree) that is used, otherwise
newpage is called to allocate a new one. clear is set for newpage, so it is
zeroed, setting all entries as invalid. If the page is new, a kernel map is made,
otherwise, the kernel map was already done at page allocation time.

• mmu.c:218

The entry in the PDB is set as valid, usable for protection ring 3, and allowing
writes. The Intel checks permissions on the entry in the PDB, and then it checks
permissions on the entry in the second label page table, every time an address
is used (of course, TLB caches such things).

• mmu.c:219,221

mmuused is updated to contain the new page, so that mmuptefree could know
which entries are used. As only a few entries of the 1024 existing entries are
really used, that saves a lot of time. daddr (not used here as a disk address)
is used to keep the index in the PDB. PDB used entries can be found pretty
quickly.

• mmu.c:224,225

At this point, the second level page table exists. pte is set pointing to the
second level page table. page->va should be equal to KADDR(PPN(pdb[pdbx])).
However, the author prefers to obtain the pointer through the entry in the PDB,
probably to be sure that things are working properly. The entry in the second
level page table for va is set with pa together with the USER bit, which says
that ring 3 can access the page. When fixfault calls putmmu, pa is not just
the page frame address for va, fixfault sets some of its offset bits to specify
which permissions should be enabled (e.g. PTEWRITE, etc.), so the author ORs
pa to keep those bits set.

• mmu.c:227,231

Again ensuring that the Mach page is mapped, although it should be mapped
already if the PDB did exist, and it will be mapped by mmuswitch in any case.
Just for safety.

6.7.3 Adding and looking up entries

mmuwalk() Walks to an MMU entry (and perhaps creates it).

• mmu.c:233,234

You saw how mmuwalk was called to get a pointer to the entry in the MMU
page table for a given va. If level is 1, the entry wanted is the one in the
first level page table, should it be 2, the entry wanted is the one in the second
level page table. Other architectures may accept more than two levels (note the
clean generic interface for the routine), but intels have just two. create can be
set to request that the second level table be created. mmu.c itself uses mmuwalk,
and meminit uses it too to create a prototype table. Unlike putmmu, mmuwalk
does not require up to have a valid current process.
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• mmu.c:245,247

table is set to point to the entry in PDB for the given va. If the entry is nil,
and it shouldn’t be created, there is nothing to do.

• mmu.c:249,268

Just two levels on Intels. For level 1, table is the pointer to the entry. For level
2, if the entry in *table was not valid, a second level page table is allocated
and the entry in the PDB updated. This only happens when create was set.
Finally, table is set to point to the virtual address for the second level page
table, and a pointer to its entry for va returned.

mmukmap() Adds a kernel map to the MMU.

• mmu.c:307,308

mmukmap adds a translation to the MMU page table for a page within the kernel
portion of the address space. You saw how mmukmap was called during boot
time, while initializing memory.

• mmu.c:314,318

mach0 is set to point to the Mach structure for the boot processor. If it has bit
0x10 set in its cr4 and the processor is not so old that does not support it,
super-pages can be used (Remember, using entries in the first-level page table
to map 4MB). pse is set if super-pages can be used.

• mmu.c:321,326

If va is not given, mmukmap understands that it is doing the identity map at
KZERO. Otherwise, it is truncated to be a page address.

• mmu.c:328,399

This loop maps the range of physical memory going from pa to pa+size-1. The
routine can be used both to map a single page and to map a whole range of
(4K) pages.

• mmu.c:331

table is pointing to the first level entry in the prototype PDB at processor zero.

• mmu.c:335,379

The entry is valid. If the entry had the PTESIZE bit, it was a map for 4M
without using a second level page table (:337,357). In this case, x is the start
of a 4M super- page frame, which should be the same of pa—at each pass,
pa is the physical address being mapped. pa is set either to the end of the
mapped memory or to the end of the super-page, preparing things up for the
next iteration or for terminating the loop. The loop continues after the portion
mapped by the super-page. If pa is already pae, all remaining pages to be
mapped were already mapped by the super-page and the loop finishes.

If the entry (:336) did not have the PTESIZE bit, it is pointing to a second level
page table (:360,376). In this case, mmuwalk is used to get the entry in the
second level page table (note again: processor zero PDB). If the entry is valid,
pa is advanced past the already mapped page.

sync is not-zero when a second level page table entry has been scanned.
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• mmu.c:382,298

The entry was not mapped. If pse says so, a whole super-page is used to map
the desired address. This assumes that all the 4MB of physical memory (4MB
aligned) where pa stands are to be mapped; hence the checks at line :387. It
is very important to use super-pages since the Intel has different TLB entries
for super-pages and regular pages. By making the kernel use super-pages, the
user TLB entries are not disturbed while servicing interrupts and system calls.
If no super-pages can be used (or the mapping does not contain a whole 4M
super-page), mmuwalk is used to create the second level entry. pgsz is set so
that :396,397 can prepare the next pass. sync is not-zero when any entry has
been added to the processor zero PDB.

• mmu.c:402,407

mmukmapsync is called if mmukmap was called and either the mapping was at
a second-level page table, or an entry was updated—you also saw a call to
mmukmapsync before.

mmukmap

mmukmapsync() Synchronizes kernel maps in page tables.

• mmu.c:272,273

mmukmapsync updates prototype page tables for all processors by looking at
the boot processor page table. It fixes any missing entry. So, apart of initial
memory mappings created during boot time, any kernel map added later only
has to be set at processor 0. That is precisely what mmukmap does!

Other processors will fault when using memory mapped at a different processor,
but mmukmapsync will notice that there is a map in mach0->pdb, and will copy
such map to the faulting processor page table. Note also how it flushes the tlb,
and how the page table for the current process is updated to repair any page
fault there.

Faults at these kernel mapped pages will happen only for memory not mapped
initially during boot time.
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And now what?

Although we have gone a long way already, you still have devices in the Plan 9 kernel
that remain to be read. You should try to understand them.

Besides, Plan 9 is much more than its kernel. For example, the code for the local
file system provider (kfs) is really interesting to learn how to structure a partition
into a set of files.

It is also illustrative to read the code for user commands, including the plumber,
rio, sam, and acme. You can learn a lot by doing so; not just a lot about operating
systems, but also a lot about good programming practices.

Finally, you could be so kind to let me know whatever suggestion you may have
about this document.

Have fun with Plan 9!
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